File size: 12,147 Bytes
f394b25
 
 
 
 
ff76617
e12aa83
f394b25
 
 
 
 
 
 
d88209d
 
 
f394b25
a71a831
f394b25
 
 
d88209d
 
dda4a06
5d37db7
dda4a06
5d37db7
dda4a06
ff76617
d88209d
 
a71a831
 
 
 
 
 
 
ff76617
a71a831
d88209d
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
ff76617
a71a831
 
d88209d
 
 
 
a71a831
 
 
 
d88209d
a71a831
d88209d
 
 
 
5d37db7
d88209d
 
5d37db7
dda4a06
5d37db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff76617
 
d88209d
 
5d37db7
828effe
ff76617
a71a831
5d37db7
a71a831
 
 
ff76617
a71a831
d88209d
ff76617
 
 
 
 
 
 
 
 
76162fc
ff76617
a71a831
d88209d
5d37db7
a71a831
d88209d
ff76617
76162fc
dda4a06
76162fc
dda4a06
76162fc
ff76617
76162fc
dda4a06
ff76617
76162fc
dda4a06
 
 
 
 
76162fc
ff76617
dda4a06
 
ff76617
dda4a06
ff76617
76162fc
ff76617
 
dda4a06
ff76617
 
76162fc
 
ff76617
 
 
76162fc
 
ff76617
d88209d
 
a71a831
ff76617
d88209d
 
 
 
 
ff76617
 
76162fc
ff76617
76162fc
d88209d
 
 
ff76617
d88209d
 
 
 
a71a831
d88209d
 
ff76617
76162fc
a71a831
5d37db7
d88209d
 
5d37db7
ff76617
 
76162fc
8a7f6db
ff76617
76162fc
d88209d
ff76617
76162fc
ff76617
a71a831
ff76617
dda4a06
a71a831
 
d88209d
 
 
 
 
 
 
 
 
 
 
ff76617
8a7f6db
d88209d
a71a831
 
d88209d
e12aa83
 
 
ff76617
e12aa83
 
 
 
a71a831
e12aa83
a71a831
e12aa83
a71a831
e12aa83
d88209d
ff76617
a71a831
 
 
d88209d
 
 
 
 
9345354
dda4a06
d88209d
ff76617
d88209d
 
ff76617
 
d88209d
9345354
76162fc
9345354
ff76617
9345354
 
 
 
 
ff76617
9345354
ff76617
9345354
ff76617
9345354
ff76617
76162fc
ff76617
76162fc
 
 
9345354
ff76617
9345354
76162fc
9345354
ff76617
9345354
 
ff76617
9345354
ff76617
9345354
 
ff76617
 
 
 
9345354
ff76617
9345354
ff76617
9345354
ff76617
9345354
ff76617
9345354
ff76617
9345354
a71a831
ff76617
9345354
ff76617
 
 
 
d88209d
 
ff76617
 
 
d88209d
9345354
d88209d
ff76617
 
 
d88209d
9345354
a71a831
55e3db0
9345354
f394b25
 
e12aa83
 
ff76617
f394b25
 
ff76617
f394b25
d88209d
 
9345354
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from typing import List, Dict
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import logging
import torch
import gc
from diskcache import Cache
from transformers import AutoTokenizer
from functools import lru_cache
from difflib import SequenceMatcher

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 1
MAX_WORKERS = 2
CHUNK_SIZE = 5
MODEL_MAX_TOKENS = 131072
MAX_TEXT_LENGTH = 500000
MAX_ROWS_TO_PROCESS = 1000  # Limit for Excel/CSV rows

# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
os.makedirs(report_dir, exist_ok=True)

os.environ.update({
    "HF_HOME": model_cache_dir,
    "TOKENIZERS_PARALLELISM": "false",
})

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Initialize cache
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)

@lru_cache(maxsize=1)
def get_tokenizer():
    return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    hash_md5 = hashlib.md5()
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def extract_pdf_page(page, tokenizer, max_tokens=MAX_TOKENS) -> List[str]:
    try:
        text = page.extract_text() or ""
        text = sanitize_utf8(text)
        if len(text) > MAX_TEXT_LENGTH // 10:
            text = text[:MAX_TEXT_LENGTH // 10]
        
        tokens = tokenizer.encode(text, add_special_tokens=False)
        if len(tokens) > max_tokens:
            chunks = []
            current_chunk = []
            current_length = 0
            for token in tokens:
                if current_length + 1 > max_tokens:
                    chunks.append(tokenizer.decode(current_chunk))
                    current_chunk = [token]
                    current_length = 1
                else:
                    current_chunk.append(token)
                    current_length += 1
            if current_chunk:
                chunks.append(tokenizer.decode(current_chunk))
            return chunks
        return [text]
    except Exception as e:
        logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
        return []

def extract_all_pages(file_path: str) -> List[str]:
    try:
        tokenizer = get_tokenizer()
        with pdfplumber.open(file_path) as pdf:
            total_pages = len(pdf.pages)
            if total_pages == 0:
                return ["PDF appears to be empty"]

        results = []
        for i in range(0, min(total_pages, 50)):  # Limit to first 50 pages
            try:
                page = pdf.pages[i]
                chunks = extract_pdf_page(page, tokenizer)
                for chunk in chunks:
                    results.append(f"=== Page {i+1} ===\n{chunk}")
            except Exception as e:
                logger.warning(f"Error processing page {i+1}: {str(e)}")
                continue
        
        return results if results else ["Could not extract text from PDF"]
    except Exception as e:
        logger.error(f"PDF processing error: {e}")
        return [f"PDF processing error: {str(e)}"]

def excel_to_json(file_path: str) -> List[Dict]:
    engines = ['openpyxl', 'xlrd']
    for engine in engines:
        try:
            with pd.ExcelFile(file_path, engine=engine) as excel_file:
                sheets = excel_file.sheet_names
                if not sheets:
                    return [{"error": "No sheets found"}]
                
                results = []
                for sheet_name in sheets[:3]:  # Limit to first 3 sheets
                    try:
                        df = pd.read_excel(
                            excel_file,
                            sheet_name=sheet_name,
                            header=None,
                            dtype=str,
                            na_filter=False,
                            nrows=MAX_ROWS_TO_PROCESS  # Limit rows
                        )
                        if not df.empty:
                            rows = df.head(MAX_ROWS_TO_PROCESS).values.tolist()
                            results.append({
                                "filename": os.path.basename(file_path),
                                "sheet": sheet_name,
                                "rows": rows,
                                "type": "excel"
                            })
                    except Exception as e:
                        logger.warning(f"Error processing sheet {sheet_name}: {str(e)}")
                        continue
                
                return results if results else [{"error": "No readable data found"}]
        except Exception as e:
            logger.warning(f"Excel engine {engine} failed: {str(e)}")
            continue
    
    return [{"error": "Could not process Excel file with any engine"}]

def csv_to_json(file_path: str) -> List[Dict]:
    try:
        df = pd.read_csv(
            file_path,
            header=None,
            dtype=str,
            encoding_errors='replace',
            on_bad_lines='skip',
            nrows=MAX_ROWS_TO_PROCESS  # Limit rows
        )
        if df.empty:
            return [{"error": "CSV file is empty"}]
            
        return [{
            "filename": os.path.basename(file_path),
            "rows": df.values.tolist(),
            "type": "csv"
        }]
    except Exception as e:
        logger.error(f"CSV processing error: {e}")
        return [{"error": f"CSV processing error: {str(e)}"}]

def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
    try:
        logger.info(f"Processing {file_type} file: {os.path.basename(file_path)}")
        
        if file_type == "pdf":
            chunks = extract_all_pages(file_path)
            return [{
                "filename": os.path.basename(file_path),
                "content": chunk,
                "type": "pdf"
            } for chunk in chunks]
            
        elif file_type in ["xls", "xlsx"]:
            return excel_to_json(file_path)
            
        elif file_type == "csv":
            return csv_to_json(file_path)
            
        return [{"error": f"Unsupported file type: {file_type}"}]
    except Exception as e:
        logger.error(f"Error processing file: {e}")
        return [{"error": f"Error processing file: {str(e)}"}]

def clean_response(text: str) -> str:
    if not text:
        return ""
    
    patterns = [
        (re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
        (re.compile(r"\s+"), " "),
    ]
    
    for pattern, repl in patterns:
        text = pattern.sub(repl, text)
    
    return text.strip()

@lru_cache(maxsize=1)
def init_agent():
    logger.info("Initializing model...")
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": os.path.join(tool_cache_dir, "new_tool.json")},
        force_finish=True,
        enable_checker=False,
        step_rag_num=4,
        seed=100,
    )
    agent.init_model()
    logger.info("Agent Ready")
    return agent

def create_ui(agent):
    PROMPT_TEMPLATE = """
Analyze this patient record excerpt for missed diagnoses (limit response to 500 tokens):
{chunk}
"""

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Analysis", height=500, type="messages")
                msg_input = gr.Textbox(placeholder="Ask about potential oversights...")
                send_btn = gr.Button("Analyze", variant="primary")
                file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="single")
            
            with gr.Column(scale=1):
                final_summary = gr.Markdown("## Summary")
                status = gr.Textbox(label="Status", interactive=False)

        def analyze(message: str, history: List[Dict], file_obj) -> tuple:
            try:
                if not file_obj:
                    return history, "Please upload a file first", "No file uploaded"

                file_path = file_obj.name
                file_type = os.path.splitext(file_path)[-1].lower().replace(".", "")
                history.append({"role": "user", "content": message})

                # Process file
                processed = process_file_cached(file_path, file_type)
                if "error" in processed[0]:
                    history.append({"role": "assistant", "content": processed[0]["error"]})
                    return history, processed[0]["error"], "File processing failed"

                # Prepare chunks
                chunks = []
                for item in processed:
                    if "content" in item:
                        chunks.append(item["content"])
                    elif "rows" in item:
                        rows_text = "\n".join([", ".join(map(str, row)) for row in item["rows"][:100]])
                        chunks.append(f"=== {item.get('sheet', 'Data')} ===\n{rows_text}")

                if not chunks:
                    history.append({"role": "assistant", "content": "No processable content found."})
                    return history, "No processable content found", "Content extraction failed"

                # Analyze each chunk
                responses = []
                for i, chunk in enumerate(chunks[:5]):
                    try:
                        prompt = PROMPT_TEMPLATE.format(chunk=chunk[:5000])
                        response = agent.run_quick_summary(prompt, 0.2, 256, 500)
                        cleaned = clean_response(response)
                        if cleaned:
                            responses.append(f"Analysis {i+1}:\n{cleaned}")
                    except Exception as e:
                        logger.warning(f"Error analyzing chunk {i+1}: {str(e)}")
                        continue

                if not responses:
                    history.append({"role": "assistant", "content": "No valid analysis generated."})
                    return history, "No valid analysis generated", "Analysis failed"

                summary = "\n\n".join(responses)
                history.append({"role": "assistant", "content": summary})
                return history, "Analysis completed", "Success"

            except Exception as e:
                logger.error(f"Analysis error: {e}")
                history.append({"role": "assistant", "content": f"Error: {str(e)}"})
                return history, f"Error: {str(e)}", "Failed"
            finally:
                torch.cuda.empty_cache()
                gc.collect()

        send_btn.click(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, final_summary, status]
        )

        msg_input.submit(
            analyze,
            inputs=[msg_input, chatbot, file_upload],
            outputs=[chatbot, final_summary, status]
        )

    return demo


if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise