File size: 12,955 Bytes
f394b25
 
 
 
499e72e
f394b25
499e72e
e12aa83
f394b25
 
 
499e72e
 
f394b25
499e72e
a71a831
 
 
 
 
 
 
499e72e
 
 
 
a71a831
499e72e
 
 
 
 
3cd3468
c10ba83
 
 
fcebf54
c10ba83
3cd3468
02a4d5e
 
a71a831
 
 
 
 
 
499e72e
828effe
02a4d5e
a71a831
02a4d5e
a71a831
02a4d5e
 
 
 
 
a71a831
499e72e
d88209d
02a4d5e
a71a831
02a4d5e
 
 
 
 
a71a831
 
02a4d5e
499e72e
d88209d
499e72e
 
 
 
 
 
 
 
 
 
 
 
 
02a4d5e
 
499e72e
a71a831
499e72e
 
 
 
 
 
02a4d5e
499e72e
 
 
 
 
 
02a4d5e
499e72e
02a4d5e
a71a831
 
499e72e
02a4d5e
 
 
 
 
 
 
 
 
 
499e72e
a71a831
02a4d5e
499e72e
 
 
 
 
 
e12aa83
 
 
499e72e
e12aa83
02a4d5e
 
e12aa83
499e72e
a71a831
e12aa83
499e72e
02a4d5e
e12aa83
a71a831
e12aa83
499e72e
 
02a4d5e
499e72e
 
 
 
a71a831
02a4d5e
499e72e
02a4d5e
 
b9a61ea
499e72e
 
02a4d5e
 
 
 
 
 
 
 
 
499e72e
 
02a4d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499e72e
76162fc
02a4d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499e72e
 
02a4d5e
9345354
02a4d5e
499e72e
 
 
02a4d5e
 
9345354
499e72e
02a4d5e
499e72e
02a4d5e
9345354
02a4d5e
 
a71a831
55e3db0
f394b25
02a4d5e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess

# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

MEDICAL_KEYWORDS = {'diagnosis', 'assessment', 'plan', 'results', 'medications',
                    'allergies', 'summary', 'impression', 'findings', 'recommendations'}

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def extract_priority_pages(file_path: str) -> str:
    try:
        text_chunks = []
        with pdfplumber.open(file_path) as pdf:
            for i, page in enumerate(pdf.pages):
                page_text = page.extract_text() or ""
                if i < 3 or any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
                    text_chunks.append(f"=== Page {i+1} ===\n{page_text.strip()}")
        return "\n\n".join(text_chunks)
    except Exception as e:
        return f"PDF processing error: {str(e)}"

def convert_file_to_json(file_path: str, file_type: str) -> str:
    try:
        h = file_hash(file_path)
        cache_path = os.path.join(file_cache_dir, f"{h}.json")
        if os.path.exists(cache_path):
            with open(cache_path, "r", encoding="utf-8") as f:
                return f.read()

        if file_type == "pdf":
            text = extract_priority_pages(file_path)
            result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
        elif file_type == "csv":
            df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
                             skip_blank_lines=False, on_bad_lines="skip")
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        elif file_type in ["xls", "xlsx"]:
            try:
                df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
            except Exception:
                df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
            content = df.fillna("").astype(str).values.tolist()
            result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
        else:
            result = json.dumps({"error": f"Unsupported file type: {file_type}"})
        with open(cache_path, "w", encoding="utf-8") as f:
            f.write(result)
        return result
    except Exception as e:
        return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})

def log_system_usage(tag=""):
    try:
        cpu = psutil.cpu_percent(interval=1)
        mem = psutil.virtual_memory()
        print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
            capture_output=True, text=True
        )
        if result.returncode == 0:
            used, total, util = result.stdout.strip().split(", ")
            print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
    except Exception as e:
        print(f"[{tag}] GPU/CPU monitor failed: {e}")

def clean_response(text: str) -> str:
    text = sanitize_utf8(text)
    # Remove tool calls, JSON data, and repetitive phrases
    text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
    text = re.sub(r"\['get_[^\]]+\']\n?", "", text)  # Remove tool names
    text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)  # Remove JSON
    text = re.sub(r"To analyze the medical records for clinical oversights.*?begin by reviewing.*?\n", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text).strip()
    # Only keep text under analysis headings or relevant content
    if not re.search(r"(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", text):
        return ""
    return text

def init_agent():
    print("πŸ” Initializing model...")
    log_system_usage("Before Load")
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=2,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    log_system_usage("After Load")
    print("βœ… Agent Ready")
    return agent

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
        chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
        file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
        msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
        send_btn = gr.Button("Analyze", variant="primary")
        download_output = gr.File(label="Download Full Report")

        def analyze(message: str, history: List[dict], files: List):
            history.append({"role": "user", "content": message})
            history.append({"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."})
            yield history, None

            extracted = ""
            file_hash_value = ""
            if files:
                with ThreadPoolExecutor(max_workers=6) as executor:
                    futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
                    results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
                    extracted = "\n".join(results)
                    file_hash_value = file_hash(files[0].name) if files else ""

            # Split extracted text into chunks of ~4,000 characters
            chunk_size = 4000
            chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
            combined_response = ""

            prompt_template = f"""
Analyze the medical records for clinical oversights. Provide a concise, evidence-based summary under these headings:

1. **Missed Diagnoses**:
   - Identify inconsistencies in history, symptoms, or tests.
   - Consider psychiatric, neurological, infectious, autoimmune, genetic conditions, family history, trauma, and developmental factors.

2. **Medication Conflicts**:
   - Check for contraindications, interactions, or unjustified off-label use.
   - Assess if medications worsen diagnoses or cause adverse effects.

3. **Incomplete Assessments**:
   - Note missing or superficial cognitive, psychiatric, social, or family assessments.
   - Highlight gaps in medical history, substance use, or lab/imaging documentation.

4. **Urgent Follow-up**:
   - Flag abnormal lab results, imaging, behaviors, or legal history needing immediate reassessment or referral.

Medical Records (Chunk {0} of {1}):
{{chunk}}

Begin analysis:
"""

            try:
                if history and history[-1]["content"].startswith("⏳"):
                    history.pop()

                # Process each chunk and stream cleaned results
                for chunk_idx, chunk in enumerate(chunks, 1):
                    # Update UI with progress
                    history.append({"role": "assistant", "content": f"πŸ”„ Processing Chunk {chunk_idx} of {len(chunks)}..."})
                    yield history, None

                    prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk)
                    chunk_response = ""
                    for chunk_output in agent.run_gradio_chat(
                        message=prompt,
                        history=[],
                        temperature=0.2,
                        max_new_tokens=1024,
                        max_token=4096,
                        call_agent=False,
                        conversation=[],
                    ):
                        if chunk_output is None:
                            continue
                        if isinstance(chunk_output, list):
                            for m in chunk_output:
                                if hasattr(m, 'content') and m.content:
                                    cleaned = clean_response(m.content)
                                    if cleaned:
                                        chunk_response += cleaned + "\n"
                                        # Stream partial response to UI
                                        if history[-1]["content"].startswith("πŸ”„"):
                                            history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
                                        else:
                                            history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
                                        yield history, None
                        elif isinstance(chunk_output, str) and chunk_output.strip():
                            cleaned = clean_response(chunk_output)
                            if cleaned:
                                chunk_response += cleaned + "\n"
                                # Stream partial response to UI
                                if history[-1]["content"].startswith("πŸ”„"):
                                    history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
                                else:
                                    history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
                                yield history, None

                    # Append completed chunk response to combined response
                    if chunk_response:
                        combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"

                # Finalize UI with complete response
                if combined_response:
                    history[-1]["content"] = combined_response.strip()
                else:
                    history.append({"role": "assistant", "content": "No oversights identified."})

                # Generate report file with cleaned response
                report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
                if report_path:
                    with open(report_path, "w", encoding="utf-8") as f:
                        f.write(combined_response)
                yield history, report_path if report_path and os.path.exists(report_path) else None

            except Exception as e:
                print("🚨 ERROR:", e)
                history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
                yield history, None

        send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
        msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
    return demo

if __name__ == "__main__":
    print("πŸš€ Launching app...")
    agent = init_agent()
    demo = create_ui(agent)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        allowed_paths=[report_dir],
        share=False
    )