File size: 15,675 Bytes
0983def
eb3d3f0
 
 
9905bc8
 
70542c8
 
dc2bfef
eb3d3f0
70542c8
eb3d3f0
0827283
 
 
 
 
70542c8
9905bc8
39eef5a
 
 
 
71a8976
 
 
39eef5a
 
9905bc8
 
0827283
 
 
 
 
 
 
 
 
9905bc8
 
 
 
0827283
70542c8
0827283
 
 
 
 
a8d3996
 
0827283
f04f718
9905bc8
31ad924
9905bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0827283
70542c8
7e2c1f5
 
 
0827283
7e2c1f5
0827283
7e2c1f5
0827283
 
accfefd
70542c8
9e64c66
 
0827283
 
 
 
 
 
9e64c66
0827283
9e64c66
0827283
 
 
 
 
 
 
 
 
 
 
9e64c66
 
19e69ba
0827283
dc2bfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10f508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d3996
 
0827283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19e69ba
 
 
0827283
 
19e69ba
e674980
f04f718
94e0da7
e674980
 
a8d3996
f04f718
70542c8
e674980
0827283
 
f04f718
0827283
94e0da7
46d6884
 
 
0827283
122f3d4
46d6884
9161fde
f04f718
 
0827283
 
f04f718
 
19e69ba
94e0da7
 
0827283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e0da7
 
70542c8
94e0da7
e6d165e
 
 
0827283
 
 
 
 
 
 
 
 
 
 
dc2bfef
 
 
 
19e69ba
0827283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2bfef
 
0827283
 
70542c8
19e69ba
70542c8
19e69ba
bdf9b37
0827283
 
 
 
 
 
 
 
 
 
10c366b
0827283
 
f8f4a14
bdf9b37
dc2bfef
 
a8d3996
0827283
 
dc2bfef
f8f4a14
0827283
dc2bfef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
from fpdf import FPDF

# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
                                  max_num_faces=1,
                                  refine_landmarks=True,
                                  min_detection_confidence=0.5)

# Functions for feature extraction
def extract_features(image, landmarks):
    red_channel = image[:, :, 2]
    green_channel = image[:, :, 1]
    blue_channel = image[:, :, 0]

    red_percent = 100 * np.mean(red_channel) / 255
    green_percent = 100 * np.mean(green_channel) / 255
    blue_percent = 100 * np.mean(blue_channel) / 255

    return [red_percent, green_percent, blue_percent]

def train_model(output_range):
    X = [[
        random.uniform(0.2, 0.5),
        random.uniform(0.05, 0.2),
        random.uniform(0.05, 0.2),
        random.uniform(0.2, 0.5),
        random.uniform(0.2, 0.5),
        random.uniform(0.2, 0.5),
        random.uniform(0.2, 0.5)
    ] for _ in range(100)]
    y = [random.uniform(*output_range) for _ in X]
    model = LinearRegression().fit(X, y)
    return model


# Load models
try:
    hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
    spo2_model = joblib.load("spo2_model_simulated.pkl")
    hr_model = joblib.load("heart_rate_model.pkl")
except FileNotFoundError:
    print(
        "Error: One or more .pkl model files are missing. Please upload them.")
    exit(1)

models = {
    "Hemoglobin": hemoglobin_model,
    "WBC Count": train_model((4.0, 11.0)),
    "Platelet Count": train_model((150, 450)),
    "Iron": train_model((60, 170)),
    "Ferritin": train_model((30, 300)),
    "TIBC": train_model((250, 400)),
    "Bilirubin": train_model((0.3, 1.2)),
    "Creatinine": train_model((0.6, 1.2)),
    "Urea": train_model((7, 20)),
    "Sodium": train_model((135, 145)),
    "Potassium": train_model((3.5, 5.1)),
    "TSH": train_model((0.4, 4.0)),
    "Cortisol": train_model((5, 25)),
    "FBS": train_model((70, 110)),
    "HbA1c": train_model((4.0, 5.7)),
    "Albumin": train_model((3.5, 5.5)),
    "BP Systolic": train_model((90, 120)),
    "BP Diastolic": train_model((60, 80)),
    "Temperature": train_model((97, 99))
}


# Helper function for risk level color coding
def get_risk_color(value, normal_range):
    low, high = normal_range
    if value < low:
        return ("Low", "🔻", "#fff3cd")
    elif value > high:
        return ("High", "🔺", "#f8d7da")
    else:
        return ("Normal", "✅", "#d4edda")


# Function to build table for test results
def build_table(title, rows):
    html = (
        f'<div style="margin-bottom: 25px; border-radius: 8px; overflow: hidden; border: 1px solid #e0e0e0;">'
        f'<div style="background: linear-gradient(135deg, #f5f7fa, #c3cfe2); padding: 12px 16px; border-bottom: 1px solid #e0e0e0;">'
        f'<h4 style="margin: 0; color: #2c3e50; font-size: 16px; font-weight: 600;">{title}</h4>'
        f'</div>'
        f'<table style="width:100%; border-collapse:collapse; background: white;">'
        f'<thead><tr style="background:#f8f9fa;"><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:left;font-size:13px;">Test</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Result</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Range</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Level</th></tr></thead><tbody>'
    )
    for i, (label, value, ref) in enumerate(rows):
        level, icon, bg = get_risk_color(value, ref)
        row_bg = "#f8f9fa" if i % 2 == 0 else "white"
        if level != "Normal":
            row_bg = bg
        
        # Format the value with appropriate units
        if "Count" in label or "Platelet" in label:
            value_str = f"{value:.0f}"
        else:
            value_str = f"{value:.2f}"
            
        html += f'<tr style="background:{row_bg};border-bottom:1px solid #e9ecef;"><td style="padding:10px 8px;color:#2c3e50;font-weight:500;">{label}</td><td style="padding:10px 8px;text-align:center;color:#2c3e50;font-weight:600;">{value_str}</td><td style="padding:10px 8px;text-align:center;color:#6c757d;font-size:12px;">{ref[0]} - {ref[1]}</td><td style="padding:10px 8px;text-align:center;font-weight:600;color:{"#28a745" if level == "Normal" else "#dc3545" if level == "High" else "#ffc107"};">{icon} {level}</td></tr>'
    html += '</tbody></table></div>'
    return html


# Generate PDF report using FPDF
def generate_pdf(report_html):
    pdf = FPDF()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.add_page()
    pdf.set_font("Arial", size=12)

    # Add a title
    pdf.cell(200, 10, txt="Face-Based Health Report", ln=True, align="C")

    # Write the report HTML content into the PDF
    pdf.multi_cell(0, 10, txt=report_html)

    # Save the PDF to a file
    pdf_output = "/mnt/data/health_report.pdf"
    pdf.output(pdf_output)
    return pdf_output


# Build health card layout
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
    from datetime import datetime
    current_date = datetime.now().strftime("%B %d, %Y")
    
    html = f"""
    <div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
        <div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
            <div style="display: flex; align-items: center; margin-bottom: 15px;">
                <div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
                    <h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
                </div>
                <div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
                    <div>Report Date: {current_date}</div>
                    {f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
                </div>
            </div>
            <div style="display: flex; align-items: center;">
                <img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
                <div>
                    <h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else "Lab Test Results"}</h2>
                    <p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}</p>
                    <p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
                </div>
            </div>
        </div>

        <div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
            {test_results['Hematology']}
            {test_results['Iron Panel']}
            {test_results['Liver & Kidney']}
            {test_results['Electrolytes']}
            {test_results['Vitals']}
        </div>

        <div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
            <h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
            <div style="color: #444; line-height: 1.6;">
                {summary}
            </div>
        </div>
    </div>
    """
    return html


# Initialize global variable for patient details
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}

# Modified analyze_face function
def analyze_face(input_data):
    if isinstance(input_data, str):  # Video input (file path in Replit)
        cap = cv2.VideoCapture(input_data)
        if not cap.isOpened():
            return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
        ret, frame = cap.read()
        cap.release()
        if not ret:
            return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
    else:  # Image input
        frame = input_data
        if frame is None:
            return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None

    # Resize image to reduce processing time
    frame = cv2.resize(frame, (640, 480))  # Adjust resolution for Replit
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    result = face_mesh.process(frame_rgb)
    if not result.multi_face_landmarks:
        return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
    landmarks = result.multi_face_landmarks[
        0].landmark  # Fixed: Use integer index
    features = extract_features(frame_rgb, landmarks)
    test_values = {}
    r2_scores = {}

    for label in models:
        if label == "Hemoglobin":
            prediction = models[label].predict([features])[0]
            test_values[label] = prediction
            r2_scores[label] = 0.385
        else:
            value = models[label].predict(
                [[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
            test_values[label] = value
            r2_scores[label] = 0.0

    gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
    green_std = np.std(frame_rgb[:, :, 1]) / 255
    brightness_std = np.std(gray) / 255
    tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
        100:150, 100:150].size else 0.5
    hr_features = [brightness_std, green_std, tone_index]
    heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
    skin_patch = frame_rgb[100:150, 100:150]
    skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
    brightness_variation = np.std(cv2.cvtColor(frame_rgb,
                                               cv2.COLOR_RGB2GRAY)) / 255
    spo2_features = [heart_rate, brightness_variation, skin_tone_index]
    spo2 = spo2_model.predict([spo2_features])[0]
    rr = int(12 + abs(heart_rate % 5 - 2))

    test_results = {
        "Hematology":
        build_table("🩸 Hematology",
                    [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
                     ("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
                     ("Platelet Count", test_values["Platelet Count"],
                      (150, 450))]),
        "Iron Panel":
        build_table("🧬 Iron Panel",
                    [("Iron", test_values["Iron"], (60, 170)),
                     ("Ferritin", test_values["Ferritin"], (30, 300)),
                     ("TIBC", test_values["TIBC"], (250, 400))]),
        "Liver & Kidney":
        build_table("🧬 Liver & Kidney",
                    [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
                     ("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
                     ("Urea", test_values["Urea"], (7, 20))]),
        "Electrolytes":
        build_table("🧪 Electrolytes",
                    [("Sodium", test_values["Sodium"], (135, 145)),
                     ("Potassium", test_values["Potassium"], (3.5, 5.1))]),
        "Vitals":
        build_table("❤️ Vitals",
                    [("SpO2", spo2, (95, 100)),
                     ("Heart Rate", heart_rate, (60, 100)),
                     ("Respiratory Rate", rr, (12, 20)),
                     ("Temperature", test_values["Temperature"], (97, 99)),
                     ("BP Systolic", test_values["BP Systolic"], (90, 120)),
                     ("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
    }

    summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"

    _, buffer = cv2.imencode('.png', frame_rgb)
    profile_image_base64 = base64.b64encode(buffer).decode('utf-8')

    # Use global patient details
    global current_patient_details
    health_card_html = build_health_card(
        profile_image_base64, 
        test_results,
        summary, 
        current_patient_details['name'],
        current_patient_details['age'],
        current_patient_details['gender'],
        current_patient_details['id']
    )

    # Generate PDF
    pdf_file_path = generate_pdf(health_card_html)
    return pdf_file_path


# Modified route_inputs function
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
    if mode == "Image" and image is None:
        return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
    if mode == "Video" and video is None:
        return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
    
    # Store patient details globally for use in analyze_face
    global current_patient_details
    current_patient_details = {
        'name': patient_name,
        'age': patient_age, 
        'gender': patient_gender,
        'id': patient_id
    }
    
    pdf_file_path = analyze_face(image if mode == "Image" else video)
    return pdf_file_path


# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Patient Information")
            patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
            patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
            patient_gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
            patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
            
            gr.Markdown("### Image/Video Input")
            mode_selector = gr.Radio(label="Choose Input Mode",
                                     choices=["Image", "Video"],
                                     value="Image")
            image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
            video_input = gr.Video(label="Upload Face Video",
                                   sources=["upload", "webcam"])
            submit_btn = gr.Button("🔍 Analyze")
        with gr.Column():
            download_btn = gr.Button("Download Report (PDF)")
            download_btn.download(pdf_file_path, "health_report.pdf")

    submit_btn.click(fn=route_inputs,
                     inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
                     outputs=[download_btn])

# Launch Gradio for Replit
demo.launch(server_name="0.0.0.0", server_port=7860)