Rammohan0504 commited on
Commit
c10f508
·
verified ·
1 Parent(s): caad3ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -3
app.py CHANGED
@@ -6,6 +6,7 @@ from sklearn.linear_model import LinearRegression
6
  import random
7
  import base64
8
  import joblib
 
9
  from reportlab.lib.pagesizes import letter
10
  from reportlab.pdfgen import canvas
11
  from io import BytesIO
@@ -17,7 +18,6 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
17
  refine_landmarks=True,
18
  min_detection_confidence=0.5)
19
 
20
-
21
  # Functions for feature extraction
22
  def extract_features(image, landmarks):
23
  red_channel = image[:, :, 2]
@@ -117,7 +117,87 @@ def build_table(title, rows):
117
  return html
118
 
119
 
120
- # Generate PDF from HTML content using reportlab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  def generate_pdf(html_content):
122
  buffer = BytesIO()
123
  c = canvas.Canvas(buffer, pagesize=letter)
@@ -160,12 +240,16 @@ def analyze_face(input_data):
160
  landmarks = result.multi_face_landmarks[
161
  0].landmark # Fixed: Use integer index
162
  features = extract_features(frame_rgb, landmarks)
 
 
 
 
163
  test_values = {}
164
  r2_scores = {}
165
 
166
  for label in models:
167
  if label == "Hemoglobin":
168
- prediction = models[label].predict([features])[0]
169
  test_values[label] = prediction
170
  r2_scores[label] = 0.385
171
  else:
 
6
  import random
7
  import base64
8
  import joblib
9
+ import pandas as pd
10
  from reportlab.lib.pagesizes import letter
11
  from reportlab.pdfgen import canvas
12
  from io import BytesIO
 
18
  refine_landmarks=True,
19
  min_detection_confidence=0.5)
20
 
 
21
  # Functions for feature extraction
22
  def extract_features(image, landmarks):
23
  red_channel = image[:, :, 2]
 
117
  return html
118
 
119
 
120
+ # Build health card layout
121
+ def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
122
+ from datetime import datetime
123
+ current_date = datetime.now().strftime("%B %d, %Y")
124
+
125
+ html = f"""
126
+ <div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
127
+
128
+ <div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
129
+ <div style="display: flex; align-items: center; margin-bottom: 15px;">
130
+ <div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
131
+ <h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
132
+ </div>
133
+ <div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
134
+ <div>Report Date: {current_date}</div>
135
+ {f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
136
+ </div>
137
+ </div>
138
+ <div style="display: flex; align-items: center;">
139
+ <img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
140
+ <div>
141
+ <h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else "Lab Test Results"}</h2>
142
+ <p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}</p>
143
+ <p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
144
+ </div>
145
+ </div>
146
+ </div>
147
+
148
+ <div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
149
+ {test_results['Hematology']}
150
+ {test_results['Iron Panel']}
151
+ {test_results['Liver & Kidney']}
152
+ {test_results['Electrolytes']}
153
+ {test_results['Vitals']}
154
+ </div>
155
+
156
+ <div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
157
+ <h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
158
+ <div style="color: #444; line-height: 1.6;">
159
+ {summary}
160
+ </div>
161
+ </div>
162
+
163
+ <div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
164
+ <button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
165
+ 📥 Download Report
166
+ </button>
167
+ <button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
168
+ 📞 Find Labs Near Me
169
+ </button>
170
+ </div>
171
+ </div>
172
+
173
+ <style>
174
+ @media print {{
175
+ body * {{
176
+ visibility: hidden;
177
+ }}
178
+ #health-card, #health-card * {{
179
+ visibility: visible;
180
+ }}
181
+ #health-card {{
182
+ position: absolute;
183
+ left: 0;
184
+ top: 0;
185
+ width: 100% !important;
186
+ max-width: none !important;
187
+ margin: 0 !important;
188
+ box-shadow: none !important;
189
+ border: none !important;
190
+ }}
191
+ button {{
192
+ display: none !important;
193
+ }}
194
+ }}
195
+ </style>
196
+ """
197
+ return html
198
+
199
+
200
+ # Function to generate PDF from HTML content using reportlab
201
  def generate_pdf(html_content):
202
  buffer = BytesIO()
203
  c = canvas.Canvas(buffer, pagesize=letter)
 
240
  landmarks = result.multi_face_landmarks[
241
  0].landmark # Fixed: Use integer index
242
  features = extract_features(frame_rgb, landmarks)
243
+
244
+ # Convert features to pandas DataFrame if the model was trained with column names
245
+ features_df = pd.DataFrame([features], columns=["feature1", "feature2", "feature3"])
246
+
247
  test_values = {}
248
  r2_scores = {}
249
 
250
  for label in models:
251
  if label == "Hemoglobin":
252
+ prediction = models[label].predict(features_df)[0]
253
  test_values[label] = prediction
254
  r2_scores[label] = 0.385
255
  else: