Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import cv2
|
4 |
import numpy as np
|
@@ -7,6 +6,7 @@ from sklearn.linear_model import LinearRegression
|
|
7 |
import random
|
8 |
import base64
|
9 |
import joblib
|
|
|
10 |
|
11 |
# Initialize the face mesh model
|
12 |
mp_face_mesh = mp.solutions.face_mesh
|
@@ -15,7 +15,6 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
|
|
15 |
refine_landmarks=True,
|
16 |
min_detection_confidence=0.5)
|
17 |
|
18 |
-
|
19 |
# Functions for feature extraction
|
20 |
def extract_features(image, landmarks):
|
21 |
red_channel = image[:, :, 2]
|
@@ -28,7 +27,6 @@ def extract_features(image, landmarks):
|
|
28 |
|
29 |
return [red_percent, green_percent, blue_percent]
|
30 |
|
31 |
-
|
32 |
def train_model(output_range):
|
33 |
X = [[
|
34 |
random.uniform(0.2, 0.5),
|
@@ -115,6 +113,25 @@ def build_table(title, rows):
|
|
115 |
return html
|
116 |
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
# Build health card layout
|
119 |
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
120 |
from datetime import datetime
|
@@ -122,7 +139,6 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
122 |
|
123 |
html = f"""
|
124 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
125 |
-
|
126 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
127 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
128 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
@@ -157,40 +173,7 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
157 |
{summary}
|
158 |
</div>
|
159 |
</div>
|
160 |
-
|
161 |
-
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
162 |
-
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
163 |
-
📥 Download Report
|
164 |
-
</button>
|
165 |
-
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
166 |
-
📞 Find Labs Near Me
|
167 |
-
</button>
|
168 |
-
</div>
|
169 |
</div>
|
170 |
-
|
171 |
-
<style>
|
172 |
-
@media print {{
|
173 |
-
body * {{
|
174 |
-
visibility: hidden;
|
175 |
-
}}
|
176 |
-
#health-card, #health-card * {{
|
177 |
-
visibility: visible;
|
178 |
-
}}
|
179 |
-
#health-card {{
|
180 |
-
position: absolute;
|
181 |
-
left: 0;
|
182 |
-
top: 0;
|
183 |
-
width: 100% !important;
|
184 |
-
max-width: none !important;
|
185 |
-
margin: 0 !important;
|
186 |
-
box-shadow: none !important;
|
187 |
-
border: none !important;
|
188 |
-
}}
|
189 |
-
button {{
|
190 |
-
display: none !important;
|
191 |
-
}}
|
192 |
-
}}
|
193 |
-
</style>
|
194 |
"""
|
195 |
return html
|
196 |
|
@@ -216,7 +199,6 @@ def analyze_face(input_data):
|
|
216 |
# Resize image to reduce processing time
|
217 |
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
218 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
219 |
-
# Provide image dimensions to mediapipe to avoid NORM_RECT warning
|
220 |
result = face_mesh.process(frame_rgb)
|
221 |
if not result.multi_face_landmarks:
|
222 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
@@ -299,7 +281,10 @@ def analyze_face(input_data):
|
|
299 |
current_patient_details['gender'],
|
300 |
current_patient_details['id']
|
301 |
)
|
302 |
-
|
|
|
|
|
|
|
303 |
|
304 |
|
305 |
# Modified route_inputs function
|
@@ -318,8 +303,8 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
318 |
'id': patient_id
|
319 |
}
|
320 |
|
321 |
-
|
322 |
-
return
|
323 |
|
324 |
|
325 |
# Create Gradio interface
|
@@ -342,12 +327,12 @@ with gr.Blocks() as demo:
|
|
342 |
sources=["upload", "webcam"])
|
343 |
submit_btn = gr.Button("🔍 Analyze")
|
344 |
with gr.Column():
|
345 |
-
|
346 |
-
|
347 |
|
348 |
submit_btn.click(fn=route_inputs,
|
349 |
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
|
350 |
-
outputs=[
|
351 |
|
352 |
# Launch Gradio for Replit
|
353 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
6 |
import random
|
7 |
import base64
|
8 |
import joblib
|
9 |
+
from fpdf import FPDF
|
10 |
|
11 |
# Initialize the face mesh model
|
12 |
mp_face_mesh = mp.solutions.face_mesh
|
|
|
15 |
refine_landmarks=True,
|
16 |
min_detection_confidence=0.5)
|
17 |
|
|
|
18 |
# Functions for feature extraction
|
19 |
def extract_features(image, landmarks):
|
20 |
red_channel = image[:, :, 2]
|
|
|
27 |
|
28 |
return [red_percent, green_percent, blue_percent]
|
29 |
|
|
|
30 |
def train_model(output_range):
|
31 |
X = [[
|
32 |
random.uniform(0.2, 0.5),
|
|
|
113 |
return html
|
114 |
|
115 |
|
116 |
+
# Generate PDF report using FPDF
|
117 |
+
def generate_pdf(report_html):
|
118 |
+
pdf = FPDF()
|
119 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
120 |
+
pdf.add_page()
|
121 |
+
pdf.set_font("Arial", size=12)
|
122 |
+
|
123 |
+
# Add a title
|
124 |
+
pdf.cell(200, 10, txt="Face-Based Health Report", ln=True, align="C")
|
125 |
+
|
126 |
+
# Write the report HTML content into the PDF
|
127 |
+
pdf.multi_cell(0, 10, txt=report_html)
|
128 |
+
|
129 |
+
# Save the PDF to a file
|
130 |
+
pdf_output = "/mnt/data/health_report.pdf"
|
131 |
+
pdf.output(pdf_output)
|
132 |
+
return pdf_output
|
133 |
+
|
134 |
+
|
135 |
# Build health card layout
|
136 |
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
137 |
from datetime import datetime
|
|
|
139 |
|
140 |
html = f"""
|
141 |
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
|
|
|
142 |
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
|
143 |
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
144 |
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
|
|
|
173 |
{summary}
|
174 |
</div>
|
175 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
"""
|
178 |
return html
|
179 |
|
|
|
199 |
# Resize image to reduce processing time
|
200 |
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
201 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
202 |
result = face_mesh.process(frame_rgb)
|
203 |
if not result.multi_face_landmarks:
|
204 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
|
|
281 |
current_patient_details['gender'],
|
282 |
current_patient_details['id']
|
283 |
)
|
284 |
+
|
285 |
+
# Generate PDF
|
286 |
+
pdf_file_path = generate_pdf(health_card_html)
|
287 |
+
return pdf_file_path
|
288 |
|
289 |
|
290 |
# Modified route_inputs function
|
|
|
303 |
'id': patient_id
|
304 |
}
|
305 |
|
306 |
+
pdf_file_path = analyze_face(image if mode == "Image" else video)
|
307 |
+
return pdf_file_path
|
308 |
|
309 |
|
310 |
# Create Gradio interface
|
|
|
327 |
sources=["upload", "webcam"])
|
328 |
submit_btn = gr.Button("🔍 Analyze")
|
329 |
with gr.Column():
|
330 |
+
download_btn = gr.Button("Download Report (PDF)")
|
331 |
+
download_btn.download(pdf_file_path, "health_report.pdf")
|
332 |
|
333 |
submit_btn.click(fn=route_inputs,
|
334 |
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
|
335 |
+
outputs=[download_btn])
|
336 |
|
337 |
# Launch Gradio for Replit
|
338 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|