Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,17 +1,14 @@ | |
| 1 | 
             
            # Face Detection-Based AI Automation of Lab Tests
         | 
| 2 | 
            -
            #  | 
| 3 |  | 
| 4 | 
            -
            import  | 
| 5 | 
             
            import cv2
         | 
| 6 | 
             
            import numpy as np
         | 
| 7 | 
             
            import mediapipe as mp
         | 
| 8 | 
            -
            import pandas as pd
         | 
| 9 | 
            -
            import time
         | 
| 10 | 
            -
            import os
         | 
| 11 |  | 
| 12 | 
             
            # Setup Mediapipe Face Mesh
         | 
| 13 | 
             
            mp_face_mesh = mp.solutions.face_mesh
         | 
| 14 | 
            -
            face_mesh = mp_face_mesh.FaceMesh(static_image_mode= | 
| 15 |  | 
| 16 | 
             
            # Function to calculate mean green intensity (simplified rPPG)
         | 
| 17 | 
             
            def estimate_heart_rate(frame, landmarks):
         | 
| @@ -25,74 +22,44 @@ def estimate_heart_rate(frame, landmarks): | |
| 25 | 
             
                heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))  # Simulated
         | 
| 26 | 
             
                return heart_rate
         | 
| 27 |  | 
| 28 | 
            -
            # Estimate SpO2 and Respiratory Rate ( | 
| 29 | 
             
            def estimate_spo2_rr(heart_rate):
         | 
| 30 | 
             
                spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
         | 
| 31 | 
             
                rr = int(12 + abs(heart_rate % 5 - 2))
         | 
| 32 | 
             
                return spo2, rr
         | 
| 33 |  | 
| 34 | 
            -
            #  | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
|  | |
| 37 |  | 
| 38 | 
            -
             | 
|  | |
| 39 |  | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
                FRAME_WINDOW = st.image([])
         | 
| 45 | 
            -
                camera = cv2.VideoCapture(0)
         | 
| 46 |  | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
                         | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
                     | 
| 55 | 
            -
             | 
| 56 | 
            -
                        heart_rate = estimate_heart_rate(frame_rgb, landmarks)
         | 
| 57 | 
            -
                        spo2, rr = estimate_spo2_rr(heart_rate)
         | 
| 58 | 
            -
                        results = {
         | 
| 59 | 
            -
                            "Hemoglobin": "12.3 g/dL (Estimated)",
         | 
| 60 | 
            -
                            "SpO2": f"{spo2}%",
         | 
| 61 | 
            -
                            "Heart Rate": f"{heart_rate} bpm",
         | 
| 62 | 
            -
                            "Blood Pressure": "Low",
         | 
| 63 | 
            -
                            "Respiratory Rate": f"{rr} breaths/min",
         | 
| 64 | 
            -
                            "Risk Flags": ["Anemia Mild", "Hydration Low"]
         | 
| 65 | 
            -
                        }
         | 
| 66 | 
            -
                    FRAME_WINDOW.image(frame_rgb)
         | 
| 67 | 
            -
                    if cv2.waitKey(1) & 0xFF == ord('q'):
         | 
| 68 | 
            -
                        break
         | 
| 69 | 
            -
                camera.release()
         | 
| 70 | 
            -
             | 
| 71 | 
            -
            # Right: Health Report
         | 
| 72 | 
            -
            with col2:
         | 
| 73 | 
            -
                st.header("🧪 AI-Based Diagnostic Report")
         | 
| 74 | 
            -
                if results:
         | 
| 75 | 
            -
                    with st.expander("Hematology & Blood Tests", expanded=True):
         | 
| 76 | 
            -
                        st.metric("Hemoglobin", results["Hemoglobin"], "Anemia Mild")
         | 
| 77 | 
            -
             | 
| 78 | 
            -
                    with st.expander("Vital Signs and Biochemical Tests", expanded=True):
         | 
| 79 | 
            -
                        st.metric("SpO2", results["SpO2"])
         | 
| 80 | 
            -
                        st.metric("Heart Rate", results["Heart Rate"])
         | 
| 81 | 
            -
                        st.metric("Blood Pressure", results["Blood Pressure"], "Low")
         | 
| 82 | 
            -
                        st.metric("Respiratory Rate", results["Respiratory Rate"], "Hydration Low")
         | 
| 83 | 
            -
             | 
| 84 | 
            -
                    with st.expander("Risk Flags"):
         | 
| 85 | 
            -
                        for flag in results["Risk Flags"]:
         | 
| 86 | 
            -
                            st.error(flag)
         | 
| 87 | 
            -
             | 
| 88 | 
            -
                    # Export Button
         | 
| 89 | 
            -
                    if st.button("📥 Export Report as CSV"):
         | 
| 90 | 
            -
                        df = pd.DataFrame([results])
         | 
| 91 | 
            -
                        df.to_csv("lab_scan_report.csv", index=False)
         | 
| 92 | 
            -
                        st.success("Report saved as lab_scan_report.csv")
         | 
| 93 | 
             
                else:
         | 
| 94 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 95 |  | 
| 96 | 
            -
             | 
| 97 | 
            -
            st.markdown("---")
         | 
| 98 | 
            -
            st.caption("© 2025 FaceLab AI by Sathkrutha Tech Solutions. Built with Streamlit, OpenCV, MediaPipe, and rPPG techniques.")
         | 
|  | |
| 1 | 
             
            # Face Detection-Based AI Automation of Lab Tests
         | 
| 2 | 
            +
            # Gradio App with OpenCV + MediaPipe + rPPG Integration for Hugging Face Spaces
         | 
| 3 |  | 
| 4 | 
            +
            import gradio as gr
         | 
| 5 | 
             
            import cv2
         | 
| 6 | 
             
            import numpy as np
         | 
| 7 | 
             
            import mediapipe as mp
         | 
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
             
            # Setup Mediapipe Face Mesh
         | 
| 10 | 
             
            mp_face_mesh = mp.solutions.face_mesh
         | 
| 11 | 
            +
            face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
         | 
| 12 |  | 
| 13 | 
             
            # Function to calculate mean green intensity (simplified rPPG)
         | 
| 14 | 
             
            def estimate_heart_rate(frame, landmarks):
         | 
|  | |
| 22 | 
             
                heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))  # Simulated
         | 
| 23 | 
             
                return heart_rate
         | 
| 24 |  | 
| 25 | 
            +
            # Estimate SpO2 and Respiratory Rate (simulated based on heart rate)
         | 
| 26 | 
             
            def estimate_spo2_rr(heart_rate):
         | 
| 27 | 
             
                spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
         | 
| 28 | 
             
                rr = int(12 + abs(heart_rate % 5 - 2))
         | 
| 29 | 
             
                return spo2, rr
         | 
| 30 |  | 
| 31 | 
            +
            # Main analysis function
         | 
| 32 | 
            +
            def analyze_face(image):
         | 
| 33 | 
            +
                if image is None:
         | 
| 34 | 
            +
                    return "No image provided", None
         | 
| 35 |  | 
| 36 | 
            +
                frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
         | 
| 37 | 
            +
                result = face_mesh.process(frame_rgb)
         | 
| 38 |  | 
| 39 | 
            +
                if result.multi_face_landmarks:
         | 
| 40 | 
            +
                    landmarks = result.multi_face_landmarks[0].landmark
         | 
| 41 | 
            +
                    heart_rate = estimate_heart_rate(frame_rgb, landmarks)
         | 
| 42 | 
            +
                    spo2, rr = estimate_spo2_rr(heart_rate)
         | 
|  | |
|  | |
| 43 |  | 
| 44 | 
            +
                    report = {
         | 
| 45 | 
            +
                        "Hemoglobin": "12.3 g/dL (Estimated)",
         | 
| 46 | 
            +
                        "SpO2": f"{spo2}%",
         | 
| 47 | 
            +
                        "Heart Rate": f"{heart_rate} bpm",
         | 
| 48 | 
            +
                        "Blood Pressure": "Low",
         | 
| 49 | 
            +
                        "Respiratory Rate": f"{rr} breaths/min",
         | 
| 50 | 
            +
                        "Risk Flags": ["Anemia Mild", "Hydration Low"]
         | 
| 51 | 
            +
                    }
         | 
| 52 | 
            +
                    return report, frame_rgb
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 53 | 
             
                else:
         | 
| 54 | 
            +
                    return "Face not detected", None
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            # Launch UI
         | 
| 57 | 
            +
            demo = gr.Interface(
         | 
| 58 | 
            +
                fn=analyze_face,
         | 
| 59 | 
            +
                inputs=gr.Image(type="numpy", label="Upload a Face Image"),
         | 
| 60 | 
            +
                outputs=[gr.JSON(label="AI Diagnostic Report"), gr.Image(label="Annotated Image")],
         | 
| 61 | 
            +
                title="Face-Based AI Lab Test Automation",
         | 
| 62 | 
            +
                description="Upload a face image to estimate basic vital signs and lab test indicators using AI-based visual inference."
         | 
| 63 | 
            +
            )
         | 
| 64 |  | 
| 65 | 
            +
            demo.launch()
         | 
|  | |
|  |