File size: 3,689 Bytes
91c1e78
65881ce
 
 
 
94f3898
51ac55a
0302345
a52be2f
0530099
 
 
5baddf7
 
65881ce
 
 
 
 
 
 
 
 
 
91c1e78
65881ce
 
91c1e78
7e7a2a5
0302345
 
5baddf7
8b5a642
 
 
a008248
 
0302345
a008248
 
 
 
 
 
a64a105
 
0302345
 
8b5a642
 
fbe2154
 
0c80efa
 
0302345
 
 
 
 
 
 
0c80efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0302345
 
65881ce
0302345
 
65881ce
0c80efa
91c1e78
65881ce
 
 
a64a105
5baddf7
91c1e78
 
0c80efa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
import os
import PyPDF2
import pandas as pd
import openai
import docx
import requests
import json
from docx import Document
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter

def detect_language(text):
    """Detects the language of the input text using OpenAI."""
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "Detect the language of this text."},
            {"role": "user", "content": text}
        ]
    )
    return response["choices"][0]["message"]["content"].strip()

# Set up OpenAI API key (replace with your key)
openai.api_key = "YOUR_OPENAI_API_KEY"

def extract_files_from_folder(folder_path):
    """Scans a folder and its subfolders for PDF, TXT, CSV, DOCX, and IPYNB files."""
    extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": [], "ipynb": []}
    
    print(f"Scanning folder: {folder_path}")
    for root, subdirs, files in os.walk(folder_path):
        print(f"Checking folder: {root}")  # Debugging log for subfolders
        for file_name in files:
            file_path = os.path.join(root, file_name)
            print(f"Found file: {file_path}")
            if file_name.endswith(".pdf"):
                extracted_files["pdf"].append(file_path)
            elif file_name.endswith(".txt"):
                extracted_files["txt"].append(file_path)
            elif file_name.endswith(".csv"):
                extracted_files["csv"].append(file_path)
            elif file_name.endswith(".docx"):
                extracted_files["docx"].append(file_path)
            elif file_name.endswith(".ipynb"):
                extracted_files["ipynb"].append(file_path)
    
    print("Files found:", extracted_files)  # Debugging log
    return extracted_files

def combine_text_from_files(extracted_files):
    """Combines text from all extracted files."""
    text = (
        get_text_from_pdf(extracted_files["pdf"]) +
        read_text_from_files(extracted_files["txt"]) +
        get_text_from_csv(extracted_files["csv"]) +
        get_text_from_docx(extracted_files["docx"]) +
        get_text_from_ipynb(extracted_files["ipynb"])
    )
    return text

def generate_response(question, text):
    """Uses OpenAI to answer a question based on extracted text."""
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a data analytics assistant. Answer the question based on the provided document content."},
            {"role": "user", "content": f"{question}\n\nBased on the following document content:\n{text[:3000]}"}  # Limit to 3000 characters to avoid excessive token usage
        ]
    )
    return response["choices"][0]["message"]["content"].strip()

def chatbot_interface(question):
    folder_path = "New_Data_Analytics/"
    extracted_files = extract_files_from_folder(folder_path)
    
    text = combine_text_from_files(extracted_files)
    
    print("Final extracted text for chatbot processing:", text[:500])  # Debugging log (First 500 chars)
    
    if not text.strip():
        return "The folder does not contain valid PDF, TXT, CSV, DOCX, or IPYNB files. Please upload supported file types."
    
    return generate_response(question, text)

# Gradio interface
demo = gr.Interface(
    fn=chatbot_interface,
    inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."),
    outputs=gr.Textbox(label="Answer")
)

demo.launch()