Rafa1986 commited on
Commit
65881ce
·
verified ·
1 Parent(s): 1982a3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -52
app.py CHANGED
@@ -1,64 +1,93 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ import PyPDF2
4
+ import pandas as pd
5
+ import openai
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.embeddings import OpenAIEmbeddings
8
+ from langchain.vectorstores import FAISS
9
+ from langchain.llms import OpenAI
10
 
11
+ def detect_language(text):
12
+ """Detects the language of the input text using OpenAI."""
13
+ response = openai.ChatCompletion.create(
14
+ model="gpt-3.5-turbo",
15
+ messages=[
16
+ {"role": "system", "content": "Detect the language of this text."},
17
+ {"role": "user", "content": text}
18
+ ]
19
+ )
20
+ return response["choices"][0]["message"]["content"].strip()
21
 
22
+ # Set up OpenAI API key (replace with your key)
23
+ openai.api_key = "YOUR_OPENAI_API_KEY"
24
 
25
+ def get_text_from_pdf(pdf_files):
26
+ text = ""
27
+ for pdf in pdf_files:
28
+ reader = PyPDF2.PdfReader(pdf)
29
+ for page in reader.pages:
30
+ text += page.extract_text() + "\n"
31
+ return text
 
 
32
 
33
+ def get_text_from_txt(txt_files):
34
+ text = ""
35
+ for txt in txt_files:
36
+ text += txt.read().decode("utf-8") + "\n"
37
+ return text
38
 
39
+ def get_text_from_csv(csv_files):
40
+ text = ""
41
+ for csv in csv_files:
42
+ df = pd.read_csv(csv)
43
+ text += df.to_string() + "\n"
44
+ return text
45
 
46
+ def create_vector_database(text):
47
+ splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
48
+ texts = splitter.split_text(text)
49
+ embeddings = OpenAIEmbeddings()
50
+ vector_db = FAISS.from_texts(texts, embeddings)
51
+ return vector_db
52
 
53
+ def get_answer(question, vector_db):
54
+ retriever = vector_db.as_retriever()
55
+ docs = retriever.get_relevant_documents(question)
56
+
57
+ if not docs:
58
+ return "I could not find the answer in the documents. Do you want me to search external sources?"
59
+
60
+ context = "\n".join([doc.page_content for doc in docs])
61
+ language = detect_language(question)
62
+ response = openai.ChatCompletion.create(
63
+ model="gpt-3.5-turbo",
64
+ messages=[
65
+ {"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents to answer questions."},
66
+ {"role": "user", "content": question + "\n\nBased on the following context:\n" + context}
67
+ ]
68
+ )
69
+ return response["choices"][0]["message"]["content"]
70
 
71
+ def chatbot_interface(pdf_files, txt_files, csv_files, question):
72
+ text = ""
73
+ text += get_text_from_pdf(pdf_files) if pdf_files else ""
74
+ text += get_text_from_txt(txt_files) if txt_files else ""
75
+ text += get_text_from_csv(csv_files) if csv_files else ""
76
+
77
+ if not text:
78
+ return "Please upload files before asking questions."
79
+
80
+ vector_db = create_vector_database(text)
81
+ return get_answer(question, vector_db)
82
 
83
+ # Gradio interface
84
+ demo = gr.Interface(
85
+ fn=chatbot_interface,
86
+ inputs=[gr.File(file_types=[".pdf"], multiple=True),
87
+ gr.File(file_types=[".txt"], multiple=True),
88
+ gr.File(file_types=[".csv"], multiple=True),
89
+ gr.Textbox(placeholder="Type your question here...")],
90
+ outputs=gr.Textbox()
 
 
 
 
 
 
 
 
 
 
91
  )
92
 
93
+ demo.launch()