Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import PyPDF2
|
4 |
+
import pandas as pd
|
5 |
+
import openai
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.llms import OpenAI
|
10 |
|
11 |
+
def detect_language(text):
|
12 |
+
"""Detects the language of the input text using OpenAI."""
|
13 |
+
response = openai.ChatCompletion.create(
|
14 |
+
model="gpt-3.5-turbo",
|
15 |
+
messages=[
|
16 |
+
{"role": "system", "content": "Detect the language of this text."},
|
17 |
+
{"role": "user", "content": text}
|
18 |
+
]
|
19 |
+
)
|
20 |
+
return response["choices"][0]["message"]["content"].strip()
|
21 |
|
22 |
+
# Set up OpenAI API key (replace with your key)
|
23 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
24 |
|
25 |
+
def get_text_from_pdf(pdf_files):
|
26 |
+
text = ""
|
27 |
+
for pdf in pdf_files:
|
28 |
+
reader = PyPDF2.PdfReader(pdf)
|
29 |
+
for page in reader.pages:
|
30 |
+
text += page.extract_text() + "\n"
|
31 |
+
return text
|
|
|
|
|
32 |
|
33 |
+
def get_text_from_txt(txt_files):
|
34 |
+
text = ""
|
35 |
+
for txt in txt_files:
|
36 |
+
text += txt.read().decode("utf-8") + "\n"
|
37 |
+
return text
|
38 |
|
39 |
+
def get_text_from_csv(csv_files):
|
40 |
+
text = ""
|
41 |
+
for csv in csv_files:
|
42 |
+
df = pd.read_csv(csv)
|
43 |
+
text += df.to_string() + "\n"
|
44 |
+
return text
|
45 |
|
46 |
+
def create_vector_database(text):
|
47 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
48 |
+
texts = splitter.split_text(text)
|
49 |
+
embeddings = OpenAIEmbeddings()
|
50 |
+
vector_db = FAISS.from_texts(texts, embeddings)
|
51 |
+
return vector_db
|
52 |
|
53 |
+
def get_answer(question, vector_db):
|
54 |
+
retriever = vector_db.as_retriever()
|
55 |
+
docs = retriever.get_relevant_documents(question)
|
56 |
+
|
57 |
+
if not docs:
|
58 |
+
return "I could not find the answer in the documents. Do you want me to search external sources?"
|
59 |
+
|
60 |
+
context = "\n".join([doc.page_content for doc in docs])
|
61 |
+
language = detect_language(question)
|
62 |
+
response = openai.ChatCompletion.create(
|
63 |
+
model="gpt-3.5-turbo",
|
64 |
+
messages=[
|
65 |
+
{"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents to answer questions."},
|
66 |
+
{"role": "user", "content": question + "\n\nBased on the following context:\n" + context}
|
67 |
+
]
|
68 |
+
)
|
69 |
+
return response["choices"][0]["message"]["content"]
|
70 |
|
71 |
+
def chatbot_interface(pdf_files, txt_files, csv_files, question):
|
72 |
+
text = ""
|
73 |
+
text += get_text_from_pdf(pdf_files) if pdf_files else ""
|
74 |
+
text += get_text_from_txt(txt_files) if txt_files else ""
|
75 |
+
text += get_text_from_csv(csv_files) if csv_files else ""
|
76 |
+
|
77 |
+
if not text:
|
78 |
+
return "Please upload files before asking questions."
|
79 |
+
|
80 |
+
vector_db = create_vector_database(text)
|
81 |
+
return get_answer(question, vector_db)
|
82 |
|
83 |
+
# Gradio interface
|
84 |
+
demo = gr.Interface(
|
85 |
+
fn=chatbot_interface,
|
86 |
+
inputs=[gr.File(file_types=[".pdf"], multiple=True),
|
87 |
+
gr.File(file_types=[".txt"], multiple=True),
|
88 |
+
gr.File(file_types=[".csv"], multiple=True),
|
89 |
+
gr.Textbox(placeholder="Type your question here...")],
|
90 |
+
outputs=gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
|
93 |
+
demo.launch()
|
|
|
|