Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,8 @@ import os
|
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
| 5 |
import openai
|
|
|
|
|
|
|
| 6 |
from langchain_community.embeddings import OpenAIEmbeddings
|
| 7 |
from langchain_community.vectorstores import FAISS
|
| 8 |
from langchain_community.llms import OpenAI
|
|
@@ -21,6 +23,20 @@ def detect_language(text):
|
|
| 21 |
# Set up OpenAI API key (replace with your key)
|
| 22 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def get_text_from_pdf(pdf_files):
|
| 25 |
text = ""
|
| 26 |
for pdf in pdf_files:
|
|
@@ -67,14 +83,16 @@ def get_answer(question, vector_db):
|
|
| 67 |
)
|
| 68 |
return response["choices"][0]["message"]["content"]
|
| 69 |
|
| 70 |
-
def chatbot_interface(
|
| 71 |
text = ""
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
if not text:
|
| 77 |
-
return "Please upload
|
| 78 |
|
| 79 |
vector_db = create_vector_database(text)
|
| 80 |
return get_answer(question, vector_db)
|
|
@@ -82,9 +100,7 @@ def chatbot_interface(pdf_files, txt_files, csv_files, question):
|
|
| 82 |
# Gradio interface
|
| 83 |
demo = gr.Interface(
|
| 84 |
fn=chatbot_interface,
|
| 85 |
-
inputs=[gr.File(file_types=[".
|
| 86 |
-
gr.File(file_types=[".txt"]),
|
| 87 |
-
gr.File(file_types=[".csv"]),
|
| 88 |
gr.Textbox(placeholder="Type your question here...")],
|
| 89 |
outputs=gr.Textbox()
|
| 90 |
)
|
|
|
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
| 5 |
import openai
|
| 6 |
+
import zipfile
|
| 7 |
+
from io import BytesIO
|
| 8 |
from langchain_community.embeddings import OpenAIEmbeddings
|
| 9 |
from langchain_community.vectorstores import FAISS
|
| 10 |
from langchain_community.llms import OpenAI
|
|
|
|
| 23 |
# Set up OpenAI API key (replace with your key)
|
| 24 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
| 25 |
|
| 26 |
+
def extract_files_from_zip(zip_file):
|
| 27 |
+
"""Extracts PDF, TXT, and CSV files from a ZIP archive."""
|
| 28 |
+
extracted_files = {"pdf": [], "txt": [], "csv": []}
|
| 29 |
+
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
| 30 |
+
for file_name in zip_ref.namelist():
|
| 31 |
+
with zip_ref.open(file_name) as file:
|
| 32 |
+
if file_name.endswith(".pdf"):
|
| 33 |
+
extracted_files["pdf"].append(BytesIO(file.read()))
|
| 34 |
+
elif file_name.endswith(".txt"):
|
| 35 |
+
extracted_files["txt"].append(BytesIO(file.read()))
|
| 36 |
+
elif file_name.endswith(".csv"):
|
| 37 |
+
extracted_files["csv"].append(BytesIO(file.read()))
|
| 38 |
+
return extracted_files
|
| 39 |
+
|
| 40 |
def get_text_from_pdf(pdf_files):
|
| 41 |
text = ""
|
| 42 |
for pdf in pdf_files:
|
|
|
|
| 83 |
)
|
| 84 |
return response["choices"][0]["message"]["content"]
|
| 85 |
|
| 86 |
+
def chatbot_interface(zip_file, question):
|
| 87 |
text = ""
|
| 88 |
+
if zip_file:
|
| 89 |
+
extracted_files = extract_files_from_zip(zip_file)
|
| 90 |
+
text += get_text_from_pdf(extracted_files["pdf"])
|
| 91 |
+
text += get_text_from_txt(extracted_files["txt"])
|
| 92 |
+
text += get_text_from_csv(extracted_files["csv"])
|
| 93 |
|
| 94 |
if not text:
|
| 95 |
+
return "Please upload a ZIP file containing PDFs, TXTs, or CSVs before asking questions."
|
| 96 |
|
| 97 |
vector_db = create_vector_database(text)
|
| 98 |
return get_answer(question, vector_db)
|
|
|
|
| 100 |
# Gradio interface
|
| 101 |
demo = gr.Interface(
|
| 102 |
fn=chatbot_interface,
|
| 103 |
+
inputs=[gr.File(file_types=[".zip"]),
|
|
|
|
|
|
|
| 104 |
gr.Textbox(placeholder="Type your question here...")],
|
| 105 |
outputs=gr.Textbox()
|
| 106 |
)
|