Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from io import BytesIO
|
|
8 |
from langchain_community.embeddings import OpenAIEmbeddings
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain_community.llms import OpenAI
|
|
|
|
|
11 |
|
12 |
def detect_language(text):
|
13 |
"""Detects the language of the input text using OpenAI."""
|
@@ -23,20 +25,34 @@ def detect_language(text):
|
|
23 |
# Set up OpenAI API key (replace with your key)
|
24 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
25 |
|
26 |
-
def extract_files_from_zip(
|
27 |
-
"""Extracts PDF, TXT, and CSV files from a ZIP archive."""
|
28 |
extracted_files = {"pdf": [], "txt": [], "csv": []}
|
29 |
-
|
|
|
30 |
for file_name in zip_ref.namelist():
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
return extracted_files
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def get_text_from_pdf(pdf_files):
|
41 |
text = ""
|
42 |
for pdf in pdf_files:
|
@@ -65,7 +81,7 @@ def create_vector_database(text):
|
|
65 |
vector_db = FAISS.from_texts(texts, embeddings)
|
66 |
return vector_db
|
67 |
|
68 |
-
def get_answer(question, vector_db):
|
69 |
retriever = vector_db.as_retriever()
|
70 |
docs = retriever.get_relevant_documents(question)
|
71 |
|
@@ -77,32 +93,33 @@ def get_answer(question, vector_db):
|
|
77 |
response = openai.ChatCompletion.create(
|
78 |
model="gpt-3.5-turbo",
|
79 |
messages=[
|
80 |
-
{"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents to answer questions."},
|
81 |
-
{"role": "user", "content": question + "\n\nBased on the following context:\n" +
|
82 |
]
|
83 |
)
|
84 |
return response["choices"][0]["message"]["content"]
|
85 |
|
86 |
-
def chatbot_interface(
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
text += get_text_from_csv(extracted_files["csv"])
|
93 |
|
94 |
if not text:
|
95 |
-
return "
|
96 |
|
|
|
97 |
vector_db = create_vector_database(text)
|
98 |
-
return get_answer(question, vector_db)
|
99 |
|
100 |
# Gradio interface
|
101 |
demo = gr.Interface(
|
102 |
fn=chatbot_interface,
|
103 |
-
inputs=[gr.File(
|
104 |
-
gr.Textbox(placeholder="Type your question here...")],
|
105 |
-
outputs=gr.Textbox()
|
106 |
)
|
107 |
|
108 |
demo.launch()
|
|
|
|
8 |
from langchain_community.embeddings import OpenAIEmbeddings
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain_community.llms import OpenAI
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
|
13 |
|
14 |
def detect_language(text):
|
15 |
"""Detects the language of the input text using OpenAI."""
|
|
|
25 |
# Set up OpenAI API key (replace with your key)
|
26 |
openai.api_key = "YOUR_OPENAI_API_KEY"
|
27 |
|
28 |
+
def extract_files_from_zip(zip_path):
|
29 |
+
"""Extracts PDF, TXT, and CSV files from a ZIP archive, including subfolders."""
|
30 |
extracted_files = {"pdf": [], "txt": [], "csv": []}
|
31 |
+
|
32 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
33 |
for file_name in zip_ref.namelist():
|
34 |
+
if file_name.endswith(('.pdf', '.txt', '.csv')):
|
35 |
+
with zip_ref.open(file_name) as file:
|
36 |
+
content = file.read()
|
37 |
+
if file_name.endswith(".pdf"):
|
38 |
+
extracted_files["pdf"].append(BytesIO(content))
|
39 |
+
elif file_name.endswith(".txt"):
|
40 |
+
extracted_files["txt"].append(BytesIO(content))
|
41 |
+
elif file_name.endswith(".csv"):
|
42 |
+
extracted_files["csv"].append(BytesIO(content))
|
43 |
return extracted_files
|
44 |
|
45 |
+
def analyze_text(text):
|
46 |
+
"""Uses OpenAI to analyze notes, links, and complementary information in the text."""
|
47 |
+
response = openai.ChatCompletion.create(
|
48 |
+
model="gpt-3.5-turbo",
|
49 |
+
messages=[
|
50 |
+
{"role": "system", "content": "Analyze this document and extract key points, links, and complementary information."},
|
51 |
+
{"role": "user", "content": text}
|
52 |
+
]
|
53 |
+
)
|
54 |
+
return response["choices"][0]["message"]["content"].strip()
|
55 |
+
|
56 |
def get_text_from_pdf(pdf_files):
|
57 |
text = ""
|
58 |
for pdf in pdf_files:
|
|
|
81 |
vector_db = FAISS.from_texts(texts, embeddings)
|
82 |
return vector_db
|
83 |
|
84 |
+
def get_answer(question, vector_db, analysis):
|
85 |
retriever = vector_db.as_retriever()
|
86 |
docs = retriever.get_relevant_documents(question)
|
87 |
|
|
|
93 |
response = openai.ChatCompletion.create(
|
94 |
model="gpt-3.5-turbo",
|
95 |
messages=[
|
96 |
+
{"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents and their analyses to answer questions."},
|
97 |
+
{"role": "user", "content": question + "\n\nBased on the following document content:\n" + context + "\n\nAdditional insights:\n" + analysis}
|
98 |
]
|
99 |
)
|
100 |
return response["choices"][0]["message"]["content"]
|
101 |
|
102 |
+
def chatbot_interface(zip_file_path, question):
|
103 |
+
if not zip_file_path:
|
104 |
+
return "Please upload a ZIP file before asking a question."
|
105 |
+
|
106 |
+
extracted_files = extract_files_from_zip(zip_file_path)
|
107 |
+
text = get_text_from_pdf(extracted_files["pdf"]) + get_text_from_txt(extracted_files["txt"]) + get_text_from_csv(extracted_files["csv"])
|
|
|
108 |
|
109 |
if not text:
|
110 |
+
return "The ZIP file does not contain valid PDF, TXT, or CSV files. Please upload supported file types."
|
111 |
|
112 |
+
analysis = analyze_text(text)
|
113 |
vector_db = create_vector_database(text)
|
114 |
+
return get_answer(question, vector_db, analysis)
|
115 |
|
116 |
# Gradio interface
|
117 |
demo = gr.Interface(
|
118 |
fn=chatbot_interface,
|
119 |
+
inputs=[gr.File(label="Upload ZIP File"),
|
120 |
+
gr.Textbox(label="Ask a question", placeholder="Type your question here...")],
|
121 |
+
outputs=gr.Textbox(label="Answer")
|
122 |
)
|
123 |
|
124 |
demo.launch()
|
125 |
+
|