File size: 6,684 Bytes
750020e
 
a76021e
750020e
8b2076c
750020e
101146a
 
750020e
 
 
 
 
a76021e
 
 
 
 
750020e
 
a76021e
 
 
750020e
 
 
a76021e
9fcaecd
 
 
 
 
a76021e
750020e
 
 
 
 
 
a76021e
750020e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3eace
 
 
033a22d
 
 
 
7a72935
227499e
033a22d
227499e
6085fed
033a22d
 
 
227499e
033a22d
227499e
 
033a22d
ccca337
 
 
f4adb15
dec19a7
ccca337
 
 
 
 
 
 
 
 
 
 
227499e
5caf956
033a22d
fe3eace
033a22d
 
589a379
033a22d
4c8a985
fe3eace
4c8a985
 
45cbfeb
 
589a379
7a72935
 
5fc7088
 
 
 
 
a76021e
 
4c91de3
101146a
05775e4
4c91de3
a76021e
4c91de3
a76021e
 
589a379
a76021e
 
589a379
a76021e
 
45cbfeb
 
a76021e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589a379
59bced5
80b1655
 
750020e
a76021e
 
750020e
 
9e9c47f
ac575b9
a76021e
 
59bced5
5fc7088
 
 
 
a76021e
5fc7088
750020e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import transformers
import re
from transformers import AutoTokenizer, pipeline
import torch
import html
import gradio as gr
import tempfile
import os
import pandas as pd

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load models
editorial_model = "PleIAs/Estienne"
bibliography_model = "PleIAs/Bibliography-Formatter"

editorial_classifier = pipeline(
    "token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
bibliography_classifier = pipeline(
    "token-classification", model=bibliography_model, aggregation_strategy="simple", device=device
)

tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)

# Helper functions
def preprocess_text(text):
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\n', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

def split_text(text, max_tokens=500):
    parts = text.split("\n")
    chunks = []
    current_chunk = ""

    for part in parts:
        temp_chunk = current_chunk + "\n" + part if current_chunk else part
        num_tokens = len(tokenizer.tokenize(temp_chunk))

        if num_tokens <= max_tokens:
            current_chunk = temp_chunk
        else:
            if current_chunk:
                chunks.append(current_chunk)
            current_chunk = part

    if current_chunk:
        chunks.append(current_chunk)

    if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
        long_text = chunks[0]
        chunks = []
        while len(tokenizer.tokenize(long_text)) > max_tokens:
            split_point = len(long_text) // 2
            while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
                split_point += 1
            if split_point >= len(long_text):
                split_point = len(long_text) - 1
            chunks.append(long_text[:split_point].strip())
            long_text = long_text[split_point:].strip()
        if long_text:
            chunks.append(long_text)

    return chunks

def remove_punctuation(text):
    return re.sub(r'[^\w\s]', '', text)

def extract_year(text):
    year_match = re.search(r'\b(\d{4})\b', text)
    return year_match.group(1) if year_match else None

def create_bibtex_entry(data):
    if 'journal' in data:
        entry_type = 'article'
    elif 'booktitle' in data:
        entry_type = 'inproceedings'
    else:
        entry_type = 'book'

    none_content = data.pop('none', '')
    year = extract_year(none_content)
    if year and 'year' not in data:
        data['year'] = year

    match_year = re.search(r'\b(\d{4})\b', data['year'])
    
    if match_year:
        data['year'] = match_year.group(1)
        year = data['year']
    else:
        data.pop('year', '')

    #Pages conformity.
    if 'pages' in data:
        match = re.search(r'\b(\d+(-\d+)?)\b', data['pages'])
        if match:
            data['pages'] = match.group(1)
        else:
            data.pop('pages', '')

    author_words = data.get('author', '').split()
    first_author = author_words[0] if author_words else 'unknown'
    bibtex_id = f"{first_author}{year}" if year else first_author
    bibtex_id = remove_punctuation(bibtex_id.lower())

    bibtex = f"@{entry_type}{{{bibtex_id},\n"
    for key, value in data.items():
        if value.strip():
            if key in ['volume', 'year']:
                value = remove_punctuation(value)
            if key == 'pages':
                value = value.replace('p. ', '')
            if key != "separator":
                bibtex += f"  {key.lower()} = {{{value.strip()}}},\n"
    bibtex = bibtex.rstrip(',\n') + "\n}"
    return bibtex

def save_bibtex(bibtex_content):
    with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.bib') as temp_file:
        temp_file.write(bibtex_content)
    return temp_file.name

class CombinedProcessor:
    def process(self, user_message):
        editorial_text = re.sub("\n", " ¶ ", user_message)
        editorial_text = re.sub(r'\s*([;:,])\s*', r' \1 ', editorial_text)
        num_tokens = len(tokenizer.tokenize(editorial_text))
        
        batch_prompts = split_text(editorial_text, max_tokens=500) if num_tokens > 500 else [editorial_text]
    
        editorial_out = editorial_classifier(batch_prompts)
        editorial_df = pd.concat([pd.DataFrame(classification) for classification in editorial_out])
        
        # Filter out only bibliography entries
        bibliography_entries = editorial_df[editorial_df['entity_group'] == 'bibliography']['word'].tolist()
        
        bibtex_entries = []
        for entry in bibliography_entries:
            entry = re.sub(r'- ?[\n¶] ?', r'', entry)
            entry = re.sub(r' ?[\n¶] ?', r' ', entry)
            bib_out = bibliography_classifier(entry)
            bib_df = pd.DataFrame(bib_out)
            
            bibtex_data = {}
            current_entity = None
            for _, row in bib_df.iterrows():
                entity_group = row['entity_group']
                word = row['word']
                
                if entity_group != 'None':
                    if entity_group in bibtex_data:
                        bibtex_data[entity_group] += ' ' + word
                    else:
                        bibtex_data[entity_group] = word
                    current_entity = entity_group
                else:
                    if current_entity:
                        bibtex_data[current_entity] += ' ' + word
                    else:
                        bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
            
            bibtex_entry = create_bibtex_entry(bibtex_data)
            bibtex_entries.append(bibtex_entry)
        
        # Join BibTeX entries with HTML formatting
        formatted_entries = [html.escape(entry) for entry in bibtex_entries]
        return "\n\n".join(formatted_entries)

# Create the processor instance
processor = CombinedProcessor()

# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">Reversed Zotero 2</h1>""")
    text_input = gr.Textbox(label="Your text", type="text", lines=10)
    text_button = gr.Button("Process Text")
    bibtex_output = gr.Textbox(label="BibTeX Entries", lines=15)
    
    export_button = gr.Button("Export BibTeX")
    export_output = gr.File(label="Exported BibTeX File")

    text_button.click(processor.process, inputs=text_input, outputs=[bibtex_output])
    export_button.click(save_bibtex, inputs=[bibtex_output], outputs=[export_output])

if __name__ == "__main__":
    demo.queue().launch()