Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -110,6 +110,29 @@ def split_text(text, max_tokens=500):
|
|
110 |
|
111 |
return chunks
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
def transform_chunks(marianne_segmentation):
|
114 |
marianne_segmentation = pd.DataFrame(marianne_segmentation)
|
115 |
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
@@ -118,11 +141,23 @@ def transform_chunks(marianne_segmentation):
|
|
118 |
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
|
119 |
|
120 |
html_output = []
|
|
|
|
|
|
|
121 |
for _, row in marianne_segmentation.iterrows():
|
122 |
entity_group = row['entity_group']
|
123 |
result_entity = "[" + entity_group.capitalize() + "]"
|
124 |
word = row['word']
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
if entity_group == 'title':
|
127 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
|
128 |
elif entity_group == 'bibliography':
|
@@ -132,8 +167,10 @@ def transform_chunks(marianne_segmentation):
|
|
132 |
else:
|
133 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
134 |
|
|
|
|
|
135 |
final_html = '\n'.join(html_output)
|
136 |
-
return final_html
|
137 |
|
138 |
|
139 |
# Class to encapsulate the Falcon chatbot
|
@@ -157,9 +194,9 @@ class MistralChatBot:
|
|
157 |
classified_list.append(df)
|
158 |
|
159 |
classified_list = pd.concat(classified_list)
|
160 |
-
|
161 |
-
generated_text = f'{css}<h2 style="text-align:center">Edited text</h2>\n<div class="generation">{
|
162 |
-
return generated_text
|
163 |
|
164 |
# Create the Falcon chatbot instance
|
165 |
mistral_bot = MistralChatBot()
|
@@ -181,7 +218,8 @@ with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
|
181 |
text_input = gr.Textbox(label="Your text", type="text", lines=1)
|
182 |
text_button = gr.Button("Extract a structured bibtex")
|
183 |
text_output = gr.HTML(label="Metadata")
|
184 |
-
|
|
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
demo.queue().launch()
|
|
|
110 |
|
111 |
return chunks
|
112 |
|
113 |
+
def create_bibtex_entry(data):
|
114 |
+
author = data.get('Author', '')
|
115 |
+
title = data.get('Title', '')
|
116 |
+
journal = data.get('Journal', '')
|
117 |
+
year = data.get('Year', '')
|
118 |
+
volume = data.get('Volume', '')
|
119 |
+
pages = data.get('Pages', '')
|
120 |
+
doi = data.get('Doi', '')
|
121 |
+
|
122 |
+
# Remove "doi: " prefix if present
|
123 |
+
doi = doi.replace('doi: ', '')
|
124 |
+
|
125 |
+
bibtex = f"""@article{{idnothing,
|
126 |
+
author = {{{author}}},
|
127 |
+
title = {{{title}}},
|
128 |
+
journal = {{{journal}}},
|
129 |
+
year = {{{year}}},
|
130 |
+
volume = {{{volume}}},
|
131 |
+
pages = {{{pages}}},
|
132 |
+
doi = {{{doi}}}
|
133 |
+
}}"""
|
134 |
+
return bibtex
|
135 |
+
|
136 |
def transform_chunks(marianne_segmentation):
|
137 |
marianne_segmentation = pd.DataFrame(marianne_segmentation)
|
138 |
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
|
|
141 |
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
|
142 |
|
143 |
html_output = []
|
144 |
+
bibtex_data = {}
|
145 |
+
current_entity = None
|
146 |
+
|
147 |
for _, row in marianne_segmentation.iterrows():
|
148 |
entity_group = row['entity_group']
|
149 |
result_entity = "[" + entity_group.capitalize() + "]"
|
150 |
word = row['word']
|
151 |
|
152 |
+
if entity_group in ['Author', 'Title', 'Journal', 'Pages', 'Doi']:
|
153 |
+
if entity_group in bibtex_data:
|
154 |
+
bibtex_data[entity_group] += ' ' + word
|
155 |
+
else:
|
156 |
+
bibtex_data[entity_group] = word
|
157 |
+
current_entity = entity_group
|
158 |
+
elif entity_group == 'None' and current_entity:
|
159 |
+
bibtex_data[current_entity] += ' ' + word
|
160 |
+
|
161 |
if entity_group == 'title':
|
162 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
|
163 |
elif entity_group == 'bibliography':
|
|
|
167 |
else:
|
168 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
169 |
|
170 |
+
bibtex_entry = create_bibtex_entry(bibtex_data)
|
171 |
+
|
172 |
final_html = '\n'.join(html_output)
|
173 |
+
return final_html, bibtex_entry
|
174 |
|
175 |
|
176 |
# Class to encapsulate the Falcon chatbot
|
|
|
194 |
classified_list.append(df)
|
195 |
|
196 |
classified_list = pd.concat(classified_list)
|
197 |
+
html_output, bibtex_entry = transform_chunks(classified_list)
|
198 |
+
generated_text = f'{css}<h2 style="text-align:center">Edited text</h2>\n<div class="generation">{html_output}</div>'
|
199 |
+
return generated_text, bibtex_entry
|
200 |
|
201 |
# Create the Falcon chatbot instance
|
202 |
mistral_bot = MistralChatBot()
|
|
|
218 |
text_input = gr.Textbox(label="Your text", type="text", lines=1)
|
219 |
text_button = gr.Button("Extract a structured bibtex")
|
220 |
text_output = gr.HTML(label="Metadata")
|
221 |
+
bibtex_output = gr.Textbox(label="BibTeX Entry", lines=10)
|
222 |
+
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output, bibtex_output])
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
demo.queue().launch()
|