Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -111,27 +111,11 @@ def split_text(text, max_tokens=500):
|
|
111 |
return chunks
|
112 |
|
113 |
def create_bibtex_entry(data):
|
114 |
-
author = data.get('Author', '').strip()
|
115 |
-
title = data.get('Title', '').strip()
|
116 |
-
journal = data.get('Journal', '').strip()
|
117 |
-
year = data.get('Year', '').strip()
|
118 |
-
volume = data.get('Volume', '').strip()
|
119 |
-
pages = data.get('Pages', '').strip()
|
120 |
-
doi = data.get('Doi', '').strip()
|
121 |
-
|
122 |
-
# Remove "doi: " prefix if present
|
123 |
-
doi = doi.replace('doi: ', '')
|
124 |
-
|
125 |
bibtex = "@article{idnothing,\n"
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
if volume: bibtex += f" volume = {{{volume}}},\n"
|
131 |
-
if pages: bibtex += f" pages = {{{pages}}},\n"
|
132 |
-
if doi: bibtex += f" doi = {{{doi}}},\n"
|
133 |
-
bibtex += "}"
|
134 |
-
|
135 |
return bibtex
|
136 |
|
137 |
|
@@ -151,13 +135,13 @@ def transform_chunks(marianne_segmentation):
|
|
151 |
result_entity = "[" + entity_group.capitalize() + "]"
|
152 |
word = row['word']
|
153 |
|
154 |
-
if entity_group
|
155 |
if entity_group in bibtex_data:
|
156 |
bibtex_data[entity_group] += ' ' + word
|
157 |
else:
|
158 |
bibtex_data[entity_group] = word
|
159 |
current_entity = entity_group
|
160 |
-
|
161 |
if current_entity:
|
162 |
bibtex_data[current_entity] += ' ' + word
|
163 |
else:
|
@@ -165,21 +149,11 @@ def transform_chunks(marianne_segmentation):
|
|
165 |
|
166 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
167 |
|
168 |
-
# Extract year from the 'None' field if present
|
169 |
-
none_content = bibtex_data.get('None', '')
|
170 |
-
year_match = re.search(r'\((\d{4})\)', none_content)
|
171 |
-
if year_match:
|
172 |
-
bibtex_data['Year'] = year_match.group(1)
|
173 |
-
|
174 |
-
# Extract volume from the 'None' field if present
|
175 |
-
volume_match = re.search(r',\s*(\d+),', none_content)
|
176 |
-
if volume_match:
|
177 |
-
bibtex_data['Volume'] = volume_match.group(1)
|
178 |
-
|
179 |
bibtex_entry = create_bibtex_entry(bibtex_data)
|
180 |
|
181 |
final_html = '\n'.join(html_output)
|
182 |
return final_html, bibtex_entry
|
|
|
183 |
|
184 |
|
185 |
# Class to encapsulate the Falcon chatbot
|
@@ -203,7 +177,19 @@ class MistralChatBot:
|
|
203 |
classified_list.append(df)
|
204 |
|
205 |
classified_list = pd.concat(classified_list)
|
|
|
|
|
|
|
|
|
|
|
206 |
html_output, bibtex_entry = transform_chunks(classified_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
generated_text = f'{css}<h2 style="text-align:center">Edited text</h2>\n<div class="generation">{html_output}</div>'
|
208 |
return generated_text, bibtex_entry
|
209 |
|
@@ -224,7 +210,7 @@ demo = gr.Blocks()
|
|
224 |
|
225 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
226 |
gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
|
227 |
-
text_input = gr.Textbox(label="Your text", type="text", lines=
|
228 |
text_button = gr.Button("Extract a structured bibtex")
|
229 |
text_output = gr.HTML(label="Metadata")
|
230 |
bibtex_output = gr.Textbox(label="BibTeX Entry", lines=10)
|
|
|
111 |
return chunks
|
112 |
|
113 |
def create_bibtex_entry(data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
bibtex = "@article{idnothing,\n"
|
115 |
+
for key, value in data.items():
|
116 |
+
if key != 'None' and value.strip():
|
117 |
+
bibtex += f" {key.lower()} = {{{value.strip()}}},\n"
|
118 |
+
bibtex = bibtex.rstrip(',\n') + "\n}"
|
|
|
|
|
|
|
|
|
|
|
119 |
return bibtex
|
120 |
|
121 |
|
|
|
135 |
result_entity = "[" + entity_group.capitalize() + "]"
|
136 |
word = row['word']
|
137 |
|
138 |
+
if entity_group != 'None':
|
139 |
if entity_group in bibtex_data:
|
140 |
bibtex_data[entity_group] += ' ' + word
|
141 |
else:
|
142 |
bibtex_data[entity_group] = word
|
143 |
current_entity = entity_group
|
144 |
+
else:
|
145 |
if current_entity:
|
146 |
bibtex_data[current_entity] += ' ' + word
|
147 |
else:
|
|
|
149 |
|
150 |
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
bibtex_entry = create_bibtex_entry(bibtex_data)
|
153 |
|
154 |
final_html = '\n'.join(html_output)
|
155 |
return final_html, bibtex_entry
|
156 |
+
|
157 |
|
158 |
|
159 |
# Class to encapsulate the Falcon chatbot
|
|
|
177 |
classified_list.append(df)
|
178 |
|
179 |
classified_list = pd.concat(classified_list)
|
180 |
+
|
181 |
+
# Debugging: Print the classified list
|
182 |
+
print("Classified List:")
|
183 |
+
print(classified_list)
|
184 |
+
|
185 |
html_output, bibtex_entry = transform_chunks(classified_list)
|
186 |
+
|
187 |
+
# Debugging: Print the outputs
|
188 |
+
print("HTML Output:")
|
189 |
+
print(html_output)
|
190 |
+
print("BibTeX Entry:")
|
191 |
+
print(bibtex_entry)
|
192 |
+
|
193 |
generated_text = f'{css}<h2 style="text-align:center">Edited text</h2>\n<div class="generation">{html_output}</div>'
|
194 |
return generated_text, bibtex_entry
|
195 |
|
|
|
210 |
|
211 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
212 |
gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
|
213 |
+
text_input = gr.Textbox(label="Your text", type="text", lines=5)
|
214 |
text_button = gr.Button("Extract a structured bibtex")
|
215 |
text_output = gr.HTML(label="Metadata")
|
216 |
bibtex_output = gr.Textbox(label="BibTeX Entry", lines=10)
|