Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,85 +1,40 @@
|
|
| 1 |
import transformers
|
| 2 |
import re
|
| 3 |
-
from transformers import
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
-
import json
|
| 7 |
-
import os
|
| 8 |
-
import shutil
|
| 9 |
-
import requests
|
| 10 |
import pandas as pd
|
| 11 |
|
| 12 |
# Define the device
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
|
| 18 |
)
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
<style>
|
| 24 |
-
.manuscript {
|
| 25 |
-
display: flex;
|
| 26 |
-
margin-bottom: 10px;
|
| 27 |
-
align-items: baseline;
|
| 28 |
-
}
|
| 29 |
-
.annotation {
|
| 30 |
-
width: 15%;
|
| 31 |
-
padding-right: 20px;
|
| 32 |
-
color: grey !important;
|
| 33 |
-
font-style: italic;
|
| 34 |
-
text-align: right;
|
| 35 |
-
}
|
| 36 |
-
.content {
|
| 37 |
-
width: 80%;
|
| 38 |
-
}
|
| 39 |
-
h2 {
|
| 40 |
-
margin: 0;
|
| 41 |
-
font-size: 1.5em;
|
| 42 |
-
}
|
| 43 |
-
.title-content h2 {
|
| 44 |
-
font-weight: bold;
|
| 45 |
-
}
|
| 46 |
-
.bibliography-content {
|
| 47 |
-
color:darkgreen !important;
|
| 48 |
-
margin-top: -5px; /* Adjust if needed to align with annotation */
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
.paratext-content {
|
| 52 |
-
color:#a4a4a4 !important;
|
| 53 |
-
margin-top: -5px; /* Adjust if needed to align with annotation */
|
| 54 |
-
}
|
| 55 |
-
</style>
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
# Preprocess the 'word' column
|
| 59 |
def preprocess_text(text):
|
| 60 |
-
# Remove HTML tags
|
| 61 |
text = re.sub(r'<[^>]+>', '', text)
|
| 62 |
-
# Replace newlines with spaces
|
| 63 |
text = re.sub(r'\n', ' ', text)
|
| 64 |
-
# Replace multiple spaces with a single space
|
| 65 |
text = re.sub(r'\s+', ' ', text)
|
| 66 |
-
# Strip leading and trailing whitespace
|
| 67 |
return text.strip()
|
| 68 |
-
|
| 69 |
def split_text(text, max_tokens=500):
|
| 70 |
-
# Split the text by newline characters
|
| 71 |
parts = text.split("\n")
|
| 72 |
chunks = []
|
| 73 |
current_chunk = ""
|
| 74 |
|
| 75 |
for part in parts:
|
| 76 |
-
|
| 77 |
-
if current_chunk:
|
| 78 |
-
temp_chunk = current_chunk + "\n" + part
|
| 79 |
-
else:
|
| 80 |
-
temp_chunk = part
|
| 81 |
-
|
| 82 |
-
# Tokenize the temporary chunk
|
| 83 |
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
| 84 |
|
| 85 |
if num_tokens <= max_tokens:
|
|
@@ -92,7 +47,6 @@ def split_text(text, max_tokens=500):
|
|
| 92 |
if current_chunk:
|
| 93 |
chunks.append(current_chunk)
|
| 94 |
|
| 95 |
-
# If no newlines were found and still exceeding max_tokens, split further
|
| 96 |
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
| 97 |
long_text = chunks[0]
|
| 98 |
chunks = []
|
|
@@ -100,7 +54,6 @@ def split_text(text, max_tokens=500):
|
|
| 100 |
split_point = len(long_text) // 2
|
| 101 |
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
| 102 |
split_point += 1
|
| 103 |
-
# Ensure split_point does not go out of range
|
| 104 |
if split_point >= len(long_text):
|
| 105 |
split_point = len(long_text) - 1
|
| 106 |
chunks.append(long_text[:split_point].strip())
|
|
@@ -118,7 +71,6 @@ def extract_year(text):
|
|
| 118 |
return year_match.group(1) if year_match else None
|
| 119 |
|
| 120 |
def create_bibtex_entry(data):
|
| 121 |
-
# Determine the entry type
|
| 122 |
if 'journal' in data:
|
| 123 |
entry_type = 'article'
|
| 124 |
elif 'booktitle' in data:
|
|
@@ -126,13 +78,11 @@ def create_bibtex_entry(data):
|
|
| 126 |
else:
|
| 127 |
entry_type = 'book'
|
| 128 |
|
| 129 |
-
# Extract year from 'None' if it exists
|
| 130 |
none_content = data.pop('none', '')
|
| 131 |
year = extract_year(none_content)
|
| 132 |
if year and 'year' not in data:
|
| 133 |
data['year'] = year
|
| 134 |
|
| 135 |
-
# Create BibTeX ID
|
| 136 |
author_words = data.get('author', '').split()
|
| 137 |
first_author = author_words[0] if author_words else 'Unknown'
|
| 138 |
bibtex_id = f"{first_author}{year}" if year else first_author
|
|
@@ -149,98 +99,57 @@ def create_bibtex_entry(data):
|
|
| 149 |
bibtex = bibtex.rstrip(',\n') + "\n}"
|
| 150 |
return bibtex
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
| 155 |
-
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
|
| 156 |
-
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
|
| 157 |
-
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
|
| 158 |
-
|
| 159 |
-
html_output = []
|
| 160 |
-
bibtex_data = {}
|
| 161 |
-
current_entity = None
|
| 162 |
-
|
| 163 |
-
for _, row in marianne_segmentation.iterrows():
|
| 164 |
-
entity_group = row['entity_group']
|
| 165 |
-
result_entity = "[" + entity_group.capitalize() + "]"
|
| 166 |
-
word = row['word']
|
| 167 |
-
|
| 168 |
-
if entity_group != 'None':
|
| 169 |
-
if entity_group in bibtex_data:
|
| 170 |
-
bibtex_data[entity_group] += ' ' + word
|
| 171 |
-
else:
|
| 172 |
-
bibtex_data[entity_group] = word
|
| 173 |
-
current_entity = entity_group
|
| 174 |
-
else:
|
| 175 |
-
if current_entity:
|
| 176 |
-
bibtex_data[current_entity] += ' ' + word
|
| 177 |
-
else:
|
| 178 |
-
bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
|
| 179 |
-
|
| 180 |
-
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
| 181 |
-
|
| 182 |
-
bibtex_entry = create_bibtex_entry(bibtex_data)
|
| 183 |
-
|
| 184 |
-
final_html = '\n'.join(html_output)
|
| 185 |
-
return final_html, bibtex_entry
|
| 186 |
-
|
| 187 |
-
# Class to encapsulate the Falcon chatbot
|
| 188 |
-
class MistralChatBot:
|
| 189 |
-
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
| 190 |
-
self.system_prompt = system_prompt
|
| 191 |
-
|
| 192 |
-
def predict(self, user_message):
|
| 193 |
editorial_text = re.sub("\n", " ¶ ", user_message)
|
| 194 |
num_tokens = len(tokenizer.tokenize(editorial_text))
|
| 195 |
|
| 196 |
-
if num_tokens > 500
|
| 197 |
-
batch_prompts = split_text(editorial_text, max_tokens=500)
|
| 198 |
-
else:
|
| 199 |
-
batch_prompts = [editorial_text]
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
for classification in out:
|
| 204 |
-
df = pd.DataFrame(classification)
|
| 205 |
-
classified_list.append(df)
|
| 206 |
-
|
| 207 |
-
classified_list = pd.concat(classified_list)
|
| 208 |
-
|
| 209 |
-
# Debugging: Print the classified list
|
| 210 |
-
print("Classified List:")
|
| 211 |
-
print(classified_list)
|
| 212 |
|
| 213 |
-
|
|
|
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
return
|
| 222 |
|
| 223 |
-
# Create the
|
| 224 |
-
|
| 225 |
|
| 226 |
# Define the Gradio interface
|
| 227 |
-
title = "Éditorialisation"
|
| 228 |
-
description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)"
|
| 229 |
-
examples = [
|
| 230 |
-
[
|
| 231 |
-
"Qui peut bénéficier de l'AIP?", # user_message
|
| 232 |
-
0.7 # temperature
|
| 233 |
-
]
|
| 234 |
-
]
|
| 235 |
-
|
| 236 |
-
demo = gr.Blocks()
|
| 237 |
-
|
| 238 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
| 239 |
-
gr.HTML("""<h1 style="text-align:center">
|
| 240 |
-
text_input = gr.Textbox(label="Your text", type="text", lines=
|
| 241 |
-
text_button = gr.Button("
|
| 242 |
-
bibtex_output = gr.Textbox(label="BibTeX
|
| 243 |
-
text_button.click(
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
demo.queue().launch()
|
|
|
|
| 1 |
import transformers
|
| 2 |
import re
|
| 3 |
+
from transformers import AutoTokenizer, pipeline
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
# Define the device
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
+
# Load models
|
| 12 |
+
editorial_model = "PleIAs/Estienne"
|
| 13 |
+
bibliography_model = "PleIAs/Bibliography-Formatter"
|
| 14 |
+
|
| 15 |
+
editorial_classifier = pipeline(
|
| 16 |
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
|
| 17 |
)
|
| 18 |
+
bibliography_classifier = pipeline(
|
| 19 |
+
"token-classification", model=bibliography_model, aggregation_strategy="simple", device=device
|
| 20 |
+
)
|
| 21 |
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
| 23 |
|
| 24 |
+
# Helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def preprocess_text(text):
|
|
|
|
| 26 |
text = re.sub(r'<[^>]+>', '', text)
|
|
|
|
| 27 |
text = re.sub(r'\n', ' ', text)
|
|
|
|
| 28 |
text = re.sub(r'\s+', ' ', text)
|
|
|
|
| 29 |
return text.strip()
|
| 30 |
+
|
| 31 |
def split_text(text, max_tokens=500):
|
|
|
|
| 32 |
parts = text.split("\n")
|
| 33 |
chunks = []
|
| 34 |
current_chunk = ""
|
| 35 |
|
| 36 |
for part in parts:
|
| 37 |
+
temp_chunk = current_chunk + "\n" + part if current_chunk else part
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
| 39 |
|
| 40 |
if num_tokens <= max_tokens:
|
|
|
|
| 47 |
if current_chunk:
|
| 48 |
chunks.append(current_chunk)
|
| 49 |
|
|
|
|
| 50 |
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
| 51 |
long_text = chunks[0]
|
| 52 |
chunks = []
|
|
|
|
| 54 |
split_point = len(long_text) // 2
|
| 55 |
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
| 56 |
split_point += 1
|
|
|
|
| 57 |
if split_point >= len(long_text):
|
| 58 |
split_point = len(long_text) - 1
|
| 59 |
chunks.append(long_text[:split_point].strip())
|
|
|
|
| 71 |
return year_match.group(1) if year_match else None
|
| 72 |
|
| 73 |
def create_bibtex_entry(data):
|
|
|
|
| 74 |
if 'journal' in data:
|
| 75 |
entry_type = 'article'
|
| 76 |
elif 'booktitle' in data:
|
|
|
|
| 78 |
else:
|
| 79 |
entry_type = 'book'
|
| 80 |
|
|
|
|
| 81 |
none_content = data.pop('none', '')
|
| 82 |
year = extract_year(none_content)
|
| 83 |
if year and 'year' not in data:
|
| 84 |
data['year'] = year
|
| 85 |
|
|
|
|
| 86 |
author_words = data.get('author', '').split()
|
| 87 |
first_author = author_words[0] if author_words else 'Unknown'
|
| 88 |
bibtex_id = f"{first_author}{year}" if year else first_author
|
|
|
|
| 99 |
bibtex = bibtex.rstrip(',\n') + "\n}"
|
| 100 |
return bibtex
|
| 101 |
|
| 102 |
+
class CombinedProcessor:
|
| 103 |
+
def process(self, user_message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
editorial_text = re.sub("\n", " ¶ ", user_message)
|
| 105 |
num_tokens = len(tokenizer.tokenize(editorial_text))
|
| 106 |
|
| 107 |
+
batch_prompts = split_text(editorial_text, max_tokens=500) if num_tokens > 500 else [editorial_text]
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
editorial_out = editorial_classifier(batch_prompts)
|
| 110 |
+
editorial_df = pd.concat([pd.DataFrame(classification) for classification in editorial_out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# Filter out only bibliography entries
|
| 113 |
+
bibliography_entries = editorial_df[editorial_df['entity_group'] == 'bibliography']['word'].tolist()
|
| 114 |
|
| 115 |
+
bibtex_entries = []
|
| 116 |
+
for entry in bibliography_entries:
|
| 117 |
+
bib_out = bibliography_classifier(entry)
|
| 118 |
+
bib_df = pd.DataFrame(bib_out)
|
| 119 |
+
|
| 120 |
+
bibtex_data = {}
|
| 121 |
+
current_entity = None
|
| 122 |
+
for _, row in bib_df.iterrows():
|
| 123 |
+
entity_group = row['entity_group']
|
| 124 |
+
word = row['word']
|
| 125 |
+
|
| 126 |
+
if entity_group != 'None':
|
| 127 |
+
if entity_group in bibtex_data:
|
| 128 |
+
bibtex_data[entity_group] += ' ' + word
|
| 129 |
+
else:
|
| 130 |
+
bibtex_data[entity_group] = word
|
| 131 |
+
current_entity = entity_group
|
| 132 |
+
else:
|
| 133 |
+
if current_entity:
|
| 134 |
+
bibtex_data[current_entity] += ' ' + word
|
| 135 |
+
else:
|
| 136 |
+
bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
|
| 137 |
+
|
| 138 |
+
bibtex_entry = create_bibtex_entry(bibtex_data)
|
| 139 |
+
bibtex_entries.append(bibtex_entry)
|
| 140 |
|
| 141 |
+
return bibtex_entries
|
| 142 |
|
| 143 |
+
# Create the processor instance
|
| 144 |
+
processor = CombinedProcessor()
|
| 145 |
|
| 146 |
# Define the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
| 148 |
+
gr.HTML("""<h1 style="text-align:center">Combined Editorial and Bibliography Processor</h1>""")
|
| 149 |
+
text_input = gr.Textbox(label="Your text", type="text", lines=10)
|
| 150 |
+
text_button = gr.Button("Process Text")
|
| 151 |
+
bibtex_output = gr.Textbox(label="BibTeX Entries", lines=15)
|
| 152 |
+
text_button.click(processor.process, inputs=text_input, outputs=[bibtex_output])
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
demo.queue().launch()
|