File size: 5,502 Bytes
750020e
 
a76021e
750020e
 
 
 
 
 
 
a76021e
 
 
 
 
750020e
 
a76021e
 
 
750020e
 
 
a76021e
9fcaecd
 
 
 
 
a76021e
750020e
 
 
 
 
 
a76021e
750020e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3eace
 
 
033a22d
 
 
 
7a72935
227499e
033a22d
227499e
 
033a22d
 
 
227499e
033a22d
227499e
 
033a22d
227499e
033a22d
 
fe3eace
033a22d
 
589a379
033a22d
4c8a985
fe3eace
4c8a985
 
589a379
 
7a72935
 
a76021e
 
4c91de3
05775e4
4c91de3
a76021e
4c91de3
a76021e
 
589a379
a76021e
 
589a379
a76021e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589a379
a76021e
750020e
a76021e
 
750020e
 
9e9c47f
a76021e
 
 
 
 
750020e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import transformers
import re
from transformers import AutoTokenizer, pipeline
import torch
import gradio as gr
import pandas as pd

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load models
editorial_model = "PleIAs/Estienne"
bibliography_model = "PleIAs/Bibliography-Formatter"

editorial_classifier = pipeline(
    "token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
bibliography_classifier = pipeline(
    "token-classification", model=bibliography_model, aggregation_strategy="simple", device=device
)

tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)

# Helper functions
def preprocess_text(text):
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\n', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

def split_text(text, max_tokens=500):
    parts = text.split("\n")
    chunks = []
    current_chunk = ""

    for part in parts:
        temp_chunk = current_chunk + "\n" + part if current_chunk else part
        num_tokens = len(tokenizer.tokenize(temp_chunk))

        if num_tokens <= max_tokens:
            current_chunk = temp_chunk
        else:
            if current_chunk:
                chunks.append(current_chunk)
            current_chunk = part

    if current_chunk:
        chunks.append(current_chunk)

    if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
        long_text = chunks[0]
        chunks = []
        while len(tokenizer.tokenize(long_text)) > max_tokens:
            split_point = len(long_text) // 2
            while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
                split_point += 1
            if split_point >= len(long_text):
                split_point = len(long_text) - 1
            chunks.append(long_text[:split_point].strip())
            long_text = long_text[split_point:].strip()
        if long_text:
            chunks.append(long_text)

    return chunks

def remove_punctuation(text):
    return re.sub(r'[^\w\s]', '', text)

def extract_year(text):
    year_match = re.search(r'\b(\d{4})\b', text)
    return year_match.group(1) if year_match else None

def create_bibtex_entry(data):
    if 'journal' in data:
        entry_type = 'article'
    elif 'booktitle' in data:
        entry_type = 'chapter'
    else:
        entry_type = 'book'

    none_content = data.pop('none', '')
    year = extract_year(none_content)
    if year and 'year' not in data:
        data['year'] = year

    author_words = data.get('author', '').split()
    first_author = author_words[0] if author_words else 'Unknown'
    bibtex_id = f"{first_author}{year}" if year else first_author
    bibtex_id = remove_punctuation(bibtex_id.lower())

    bibtex = f"@{entry_type}{{{bibtex_id},\n"
    for key, value in data.items():
        if value.strip():
            if key in ['volume', 'year']:
                value = remove_punctuation(value)
            if key == 'pages':
                value = value.replace('p. ', '')
            bibtex += f"  {key.lower()} = {{{value.strip()}}},\n"
    bibtex = bibtex.rstrip(',\n') + "\n}"
    return bibtex

class CombinedProcessor:
    def process(self, user_message):
        editorial_text = re.sub("\n", " ¶ ", user_message)
        num_tokens = len(tokenizer.tokenize(editorial_text))
        
        batch_prompts = split_text(editorial_text, max_tokens=500) if num_tokens > 500 else [editorial_text]
    
        editorial_out = editorial_classifier(batch_prompts)
        editorial_df = pd.concat([pd.DataFrame(classification) for classification in editorial_out])
        
        # Filter out only bibliography entries
        bibliography_entries = editorial_df[editorial_df['entity_group'] == 'bibliography']['word'].tolist()
        
        bibtex_entries = []
        for entry in bibliography_entries:
            bib_out = bibliography_classifier(entry)
            bib_df = pd.DataFrame(bib_out)
            
            bibtex_data = {}
            current_entity = None
            for _, row in bib_df.iterrows():
                entity_group = row['entity_group']
                word = row['word']
                
                if entity_group != 'None':
                    if entity_group in bibtex_data:
                        bibtex_data[entity_group] += ' ' + word
                    else:
                        bibtex_data[entity_group] = word
                    current_entity = entity_group
                else:
                    if current_entity:
                        bibtex_data[current_entity] += ' ' + word
                    else:
                        bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
            
            bibtex_entry = create_bibtex_entry(bibtex_data)
            bibtex_entries.append(bibtex_entry)
        
        return bibtex_entries

# Create the processor instance
processor = CombinedProcessor()

# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">Combined Editorial and Bibliography Processor</h1>""")
    text_input = gr.Textbox(label="Your text", type="text", lines=10)
    text_button = gr.Button("Process Text")
    bibtex_output = gr.Textbox(label="BibTeX Entries", lines=15)
    text_button.click(processor.process, inputs=text_input, outputs=[bibtex_output])

if __name__ == "__main__":
    demo.queue().launch()