Spaces:
Sleeping
Sleeping
File size: 8,765 Bytes
750020e a76021e 750020e 8b2076c 750020e 101146a 750020e a76021e 445c0cd a76021e 750020e a76021e 750020e a76021e 9fcaecd a76021e 750020e a76021e 750020e b97dcbf fe3eace 033a22d 7a72935 227499e 033a22d 227499e 6085fed 033a22d 227499e 033a22d 227499e 033a22d ebd0c9c ccca337 54240db ccca337 227499e 5caf956 033a22d fe3eace 033a22d 589a379 033a22d 4c8a985 fe3eace 4c8a985 45cbfeb 589a379 7a72935 14fafd9 bb84576 5fc7088 a76021e efdd1b6 959ba25 efdd1b6 38c8dad 05775e4 4c91de3 a76021e 4c91de3 a76021e 589a379 a76021e 589a379 a76021e 8e58d65 efdd1b6 38c8dad 45cbfeb 69f42d1 b0fe837 a76021e ac61d79 de4a207 ac61d79 a76021e de4a207 ac61d79 a76021e b97dcbf 69f42d1 7f9876a 14fafd9 69f42d1 7f9876a 14fafd9 7f9876a 69f42d1 750020e a76021e 750020e 54240db 9e9c47f 09967d8 a76021e 14fafd9 5fc7088 54240db bb84576 69f42d1 54240db bb84576 750020e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import transformers
import re
from transformers import AutoTokenizer, pipeline
import torch
import html
import gradio as gr
import tempfile
import os
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models
editorial_model = "PleIAs/Estienne"
bibliography_model = "PleIAs/Bibliography-Formatter"
bibliography_style = "PleIAs/Bibliography-Classifier"
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
editorial_classifier = pipeline(
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
bibliography_classifier = pipeline(
"token-classification", model=bibliography_model, aggregation_strategy="simple", device=device
)
# Helper functions
def preprocess_text(text):
text = re.sub(r'<[^>]+>', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def split_text(text, max_tokens=500):
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
temp_chunk = current_chunk + "\n" + part if current_chunk else part
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
def disambiguate_bibtex_ids(bibtex_entries):
id_count = {}
disambiguated_entries = []
for entry in bibtex_entries:
# Extract the current ID
match = re.search(r'@\w+{(\w+),', entry)
if not match:
disambiguated_entries.append(entry)
continue
original_id = match.group(1)
# Check if this ID has been seen before
if original_id in id_count:
id_count[original_id] += 1
new_id = f"{original_id}{chr(96 + id_count[original_id])}" # 'a', 'b', 'c', etc.
new_entry = re.sub(r'(@\w+{)(\w+)(,)', f'\\1{new_id}\\3', entry, 1)
disambiguated_entries.append(new_entry)
else:
id_count[original_id] = 0
disambiguated_entries.append(entry)
return disambiguated_entries
def remove_punctuation(text):
return re.sub(r'[^\w\s]', '', text)
def extract_year(text):
year_match = re.search(r'\b(\d{4})\b', text)
return year_match.group(1) if year_match else None
def create_bibtex_entry(data):
if 'journal' in data:
entry_type = 'article'
elif 'booktitle' in data:
entry_type = 'inproceedings'
else:
entry_type = 'book'
none_content = data.pop('none', '')
year = extract_year(none_content)
if year and 'year' not in data:
data['year'] = year
if "year" in data:
match_year = re.search(r'(\d{4})', data['year'])
if match_year:
data['year'] = match_year.group(1)
year = data['year']
else:
data.pop('year', '')
#Pages conformity.
if 'pages' in data:
match = re.search(r'(\d+(-\d+)?)', data['pages'])
if match:
data['pages'] = match.group(1)
else:
data.pop('pages', '')
author_words = data.get('author', '').split()
first_author = author_words[0] if author_words else 'unknown'
bibtex_id = f"{first_author}{year}" if year else first_author
bibtex_id = remove_punctuation(bibtex_id.lower())
bibtex = f"@{entry_type}{{{bibtex_id},\n"
for key, value in data.items():
if value.strip():
if key in ['volume', 'year']:
value = remove_punctuation(value)
if key == 'pages':
value = value.replace('p. ', '')
if key != "separator":
bibtex += f" {key.lower()} = {{{value.strip()}}},\n"
bibtex = bibtex.rstrip(',\n') + "\n}"
return bibtex
def save_bibtex(bibtex_content):
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.bib') as temp_file:
temp_file.write(bibtex_content)
return temp_file.name
class CombinedProcessor:
def process(self, user_message):
#Precaution to reinforce bibliography detection.
editorial_text = "Bibliography\n" + user_message
#Our fix for the lack of newline in deberta
editorial_text = re.sub("\n", " ¶ ", editorial_text)
print(editorial_text)
num_tokens = len(tokenizer.tokenize(editorial_text))
batch_prompts = split_text(editorial_text, max_tokens=500) if num_tokens > 500 else [editorial_text]
editorial_out = editorial_classifier(batch_prompts)
editorial_df = pd.concat([pd.DataFrame(classification) for classification in editorial_out])
# Filter out only bibliography entries
bibliography_entries = editorial_df[editorial_df['entity_group'] == 'bibliography']['word'].tolist()
bibtex_entries = []
list_style = []
for entry in bibliography_entries:
print(entry)
entry = re.sub(r'- ?[\n¶] ?', r'', entry)
entry = re.sub(r' ?[\n¶] ?', r' ', entry)
#style = pd.DataFrame(style_classifier(entry, truncation=True, padding=True, top_k=1))
#list_style.append(style)
entry = re.sub(r'\s*([;:,\.])\s*', r' \1 ', entry)
#print(entry)
bib_out = bibliography_classifier(entry)
bib_df = pd.DataFrame(bib_out)
bibtex_data = {}
current_entity = None
for _, row in bib_df.iterrows():
entity_group = row['entity_group']
word = row['word']
if entity_group != 'None':
if entity_group in bibtex_data:
print(entity_group)
if entity_group == "author":
bibtex_data[entity_group] += ', ' + word
else:
bibtex_data[entity_group] += ' ' + word
else:
bibtex_data[entity_group] = word
current_entity = entity_group
else:
if current_entity:
if current_entity == "author":
bibtex_data[current_entity] += ', ' + word
else:
bibtex_data[current_entity] += ' ' + word
else:
bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
bibtex_entry = create_bibtex_entry(bibtex_data)
bibtex_entries.append(bibtex_entry)
#list_style = pd.concat(list_style)
#list_style = list_style.groupby('label')['score'].mean().sort_values(ascending=False).reset_index()
#top_style = list_style.iloc[0]['label']
#top_style_score = list_style.iloc[0]['score']
# Create the style information string
#style_info = f"Top bibliography style: {top_style} (Mean score: {top_style_score:.6f})"
# Join BibTeX entries
bibtex_content = "\n\n".join(bibtex_entries)
#return style_info, bibtex_content
return bibtex_content
# Create the processor instance
processor = CombinedProcessor()
# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
text_input = gr.Textbox(label="Your text", type="text", lines=10)
text_button = gr.Button("Process Text")
bibtex_output = gr.Textbox(label="BibTeX Entries", lines=15)
export_button = gr.Button("Export BibTeX")
export_output = gr.File(label="Exported BibTeX File")
text_button.click(processor.process, inputs=text_input, outputs=[bibtex_output])
export_button.click(save_bibtex, inputs=[bibtex_output], outputs=[export_output])
if __name__ == "__main__":
demo.queue().launch() |