File size: 7,903 Bytes
aa37927
df4e9ef
aa37927
df4e9ef
 
8767411
df4e9ef
 
 
 
 
 
 
 
2846566
df4e9ef
 
 
 
 
 
 
 
 
 
aa37927
df4e9ef
 
 
8767411
df4e9ef
 
8355c4d
df4e9ef
aa37927
df4e9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
df4e9ef
 
8355c4d
2846566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7beb781
 
2846566
 
 
 
 
 
 
 
 
 
df4e9ef
 
 
8355c4d
df4e9ef
 
 
 
 
 
 
e1da145
df4e9ef
 
 
 
e1da145
2846566
 
 
 
7beb781
2846566
df4e9ef
 
 
 
 
 
 
 
7beb781
df4e9ef
 
 
 
 
 
 
 
 
 
 
e1da145
df4e9ef
 
 
 
 
 
 
 
 
 
 
8355c4d
e1da145
df4e9ef
e1da145
8355c4d
 
 
 
 
df4e9ef
8355c4d
 
df4e9ef
 
8355c4d
 
 
 
df4e9ef
8355c4d
 
 
df4e9ef
8355c4d
 
df4e9ef
8355c4d
 
 
df4e9ef
8355c4d
df4e9ef
8355c4d
df4e9ef
8355c4d
 
df4e9ef
8355c4d
 
 
 
 
 
 
 
 
 
64f6484
df4e9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css, get_window_url_params
from src.display.utils import (
    COLUMNS,
    COLS,
    BENCHMARK_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    ModelType,
    WeightType,
    Precision
)

from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialization
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# Load the leaderboard DataFrame
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)  # Debug
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist())  # Debug

# Load the evaluation queue DataFrames
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

demo = gr.Blocks(css=custom_css + """
/* Column selection improvements */
.select-columns-container label {
    display: inline-block;
    width: 24%;
    font-size: 0.9em;
    padding: 2px 5px;
    margin: 2px 0;
    vertical-align: top;
}

/* Make column section more compact */
.select-columns-section {
    max-height: 300px;
    overflow-y: auto;
    padding: 0 !important;
}

/* Add category headers */
.column-category {
    font-weight: bold;
    margin-top: 10px;
    margin-bottom: 5px;
    border-bottom: 1px solid #eee;
    padding-bottom: 3px;
}
""")

with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            if LEADERBOARD_DF.empty:
                gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
            else:
                default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
                print("Default Selection before ensuring 'model_name':", default_selection)  # Debug

                # Ensure "model_name" is included
                if "model_name" not in default_selection:
                    default_selection.insert(0, "model_name")
                    print("Default Selection after ensuring 'model_name':", default_selection)  # Debug

                # Add a custom accordion for better organization of column options
                with gr.Accordion("πŸ“Š Select Columns to Display", open=False):
                    # Will be visually hidden and replaced with our custom layout
                    gr.HTML("<div class='column-category'>Keep using the checkboxes below to select columns.</div>")
                
                # Create the leaderboard with the built-in SelectColumns
                leaderboard = Leaderboard(
                    value=LEADERBOARD_DF,
                    datatype=[col.type for col in COLUMNS],
                    select_columns=SelectColumns(
                        default_selection=default_selection,
                        cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
                        label="Select Columns to Display:",
                    ),
                    search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]],
                    hide_columns=[col.name for col in COLUMNS if col.hidden],
                    filter_columns=[
                        ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
                        ColumnFilter("precision", type="checkboxgroup", label="Precision"),
                        ColumnFilter(
                            "still_on_hub", type="boolean", label="Deleted/incomplete", default=True
                        ),
                    ],
                    bool_checkboxgroup_label="Hide models",
                    interactive=False,
                )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                # Since the evaluation queues are empty, display a message
                with gr.Column():
                    gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()