update app.py
Browse files
app.py
CHANGED
|
@@ -1,280 +1,71 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
from src.about import (
|
| 10 |
-
CITATION_BUTTON_LABEL,
|
| 11 |
-
CITATION_BUTTON_TEXT,
|
| 12 |
-
EVALUATION_QUEUE_TEXT,
|
| 13 |
-
INTRODUCTION_TEXT,
|
| 14 |
-
LLM_BENCHMARKS_TEXT,
|
| 15 |
-
TITLE,
|
| 16 |
-
)
|
| 17 |
-
from src.display.css_html_js import custom_css
|
| 18 |
-
from src.display.utils import (
|
| 19 |
-
COLUMNS,
|
| 20 |
-
COLS,
|
| 21 |
-
BENCHMARK_COLS,
|
| 22 |
-
EVAL_COLS,
|
| 23 |
-
EVAL_TYPES,
|
| 24 |
-
ModelType,
|
| 25 |
-
WeightType,
|
| 26 |
-
Precision
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 30 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 31 |
-
from src.submission.submit import add_new_eval
|
| 32 |
-
|
| 33 |
-
def restart_space():
|
| 34 |
-
try:
|
| 35 |
-
API.restart_space(repo_id=REPO_ID)
|
| 36 |
-
except Exception as e:
|
| 37 |
-
print(f"Error restarting space: {e}")
|
| 38 |
|
| 39 |
# Ensure directories exist
|
| 40 |
-
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
|
| 41 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
try:
|
| 56 |
-
|
| 57 |
-
snapshot_download(
|
| 58 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
|
| 59 |
-
tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 60 |
-
)
|
| 61 |
-
print("Successfully downloaded evaluation results")
|
| 62 |
-
except Exception as e:
|
| 63 |
-
print(f"Error downloading evaluation results: {e}")
|
| 64 |
-
# Don't restart immediately, try to continue
|
| 65 |
-
|
| 66 |
-
# Add fallback data in case the remote fetch fails
|
| 67 |
-
fallback_data = False
|
| 68 |
-
if not os.listdir(EVAL_RESULTS_PATH):
|
| 69 |
-
print("No evaluation results found. Creating sample data for testing.")
|
| 70 |
-
fallback_data = True
|
| 71 |
-
# Create a sample result file for testing
|
| 72 |
-
sample_data = {
|
| 73 |
-
"config": {
|
| 74 |
-
"model_name": "Sample Arabic Model",
|
| 75 |
-
"submitted_time": "2023-01-01",
|
| 76 |
-
"base_model": "bert-base-arabic",
|
| 77 |
-
"revision": "main",
|
| 78 |
-
"precision": "float16",
|
| 79 |
-
"weight_type": "Original",
|
| 80 |
-
"model_type": "Encoder",
|
| 81 |
-
"license": "Apache-2.0",
|
| 82 |
-
"params": 110000000,
|
| 83 |
-
"still_on_hub": True
|
| 84 |
-
},
|
| 85 |
-
"results": {
|
| 86 |
-
"average": 75.5,
|
| 87 |
-
"abstract_algebra": 70.2,
|
| 88 |
-
"anatomy": 72.5,
|
| 89 |
-
"astronomy": 80.1,
|
| 90 |
-
"business_ethics": 68.3,
|
| 91 |
-
"clinical_knowledge": 75.0,
|
| 92 |
-
"college_biology": 77.4,
|
| 93 |
-
"college_chemistry": 74.2
|
| 94 |
-
}
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
with open(os.path.join(EVAL_RESULTS_PATH, "sample_result.json"), 'w') as f:
|
| 98 |
-
json.dump(sample_data, f)
|
| 99 |
-
|
| 100 |
-
# Load the leaderboard DataFrame
|
| 101 |
-
try:
|
| 102 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 103 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
| 104 |
-
print("
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
print("Creating minimal sample data for leaderboard")
|
| 110 |
LEADERBOARD_DF = pd.DataFrame([{
|
| 111 |
-
"model_name": "Sample
|
| 112 |
-
"submitted_time": "2023-01-01",
|
| 113 |
-
"base_model": "bert-base-arabic",
|
| 114 |
-
"revision": "main",
|
| 115 |
-
"precision": "float16",
|
| 116 |
-
"weight_type": "Original",
|
| 117 |
-
"model_type": "Encoder",
|
| 118 |
-
"license": "Apache-2.0",
|
| 119 |
-
"params": 110000000,
|
| 120 |
-
"still_on_hub": True,
|
| 121 |
"average": 75.5,
|
| 122 |
-
"
|
| 123 |
-
"
|
| 124 |
-
"astronomy": 80.1,
|
| 125 |
-
"business_ethics": 68.3,
|
| 126 |
-
"clinical_knowledge": 75.0,
|
| 127 |
-
"college_biology": 77.4,
|
| 128 |
-
"college_chemistry": 74.2
|
| 129 |
}])
|
| 130 |
except Exception as e:
|
| 131 |
print(f"Error loading leaderboard data: {e}")
|
| 132 |
-
# Create a minimal
|
| 133 |
LEADERBOARD_DF = pd.DataFrame([{
|
| 134 |
"model_name": "Error Loading Data",
|
| 135 |
"average": 0
|
| 136 |
}])
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
pending_eval_queue_df = pd.DataFrame(columns=EVAL_COLS)
|
| 147 |
-
|
| 148 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
| 149 |
-
gr.HTML(TITLE)
|
| 150 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 151 |
-
|
| 152 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 153 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab", id=0):
|
| 154 |
-
if LEADERBOARD_DF.empty:
|
| 155 |
-
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
| 156 |
-
else:
|
| 157 |
-
# Debug information as Markdown
|
| 158 |
-
gr.Markdown("### Leaderboard Data Debug Info")
|
| 159 |
gr.Markdown(f"DataFrame Shape: {LEADERBOARD_DF.shape}")
|
| 160 |
-
gr.Markdown(f"
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
# Ensure "model_name" is included
|
| 167 |
-
if "model_name" not in default_selection:
|
| 168 |
-
default_selection.insert(0, "model_name")
|
| 169 |
-
print("Default Selection after ensuring 'model_name':", default_selection)
|
| 170 |
-
|
| 171 |
-
# Make sure all columns exist in the DataFrame
|
| 172 |
-
for col in default_selection:
|
| 173 |
-
if col not in LEADERBOARD_DF.columns:
|
| 174 |
-
print(f"Warning: Column '{col}' not found in DataFrame. Adding empty column.")
|
| 175 |
-
LEADERBOARD_DF[col] = None
|
| 176 |
-
|
| 177 |
-
print("LEADERBOARD_DF dtypes:\n", LEADERBOARD_DF.dtypes)
|
| 178 |
-
|
| 179 |
-
# Create the leaderboard component
|
| 180 |
-
leaderboard = Leaderboard(
|
| 181 |
-
value=LEADERBOARD_DF,
|
| 182 |
-
datatype=[col.type for col in COLUMNS],
|
| 183 |
-
select_columns=SelectColumns(
|
| 184 |
-
default_selection=default_selection,
|
| 185 |
-
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
| 186 |
-
label="Select Columns to Display:",
|
| 187 |
-
),
|
| 188 |
-
search_columns=["model_name", "license"],
|
| 189 |
-
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
| 190 |
-
filter_columns=[
|
| 191 |
-
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
| 192 |
-
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
|
| 193 |
-
ColumnFilter(
|
| 194 |
-
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
|
| 195 |
-
),
|
| 196 |
-
],
|
| 197 |
-
bool_checkboxgroup_label="Hide models",
|
| 198 |
-
interactive=True, # Change to True to enable interaction
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
with gr.TabItem("📝 About", elem_id="about-tab", id=1):
|
| 202 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 203 |
-
|
| 204 |
-
with gr.TabItem("🚀 Submit here!", elem_id="submit-tab", id=2):
|
| 205 |
-
with gr.Column():
|
| 206 |
-
with gr.Row():
|
| 207 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 208 |
-
|
| 209 |
-
# Since the evaluation queues are empty, display a message
|
| 210 |
-
with gr.Column():
|
| 211 |
-
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
|
| 212 |
-
|
| 213 |
-
with gr.Row():
|
| 214 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 215 |
-
|
| 216 |
-
with gr.Row():
|
| 217 |
-
with gr.Column():
|
| 218 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 219 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 220 |
-
model_type = gr.Dropdown(
|
| 221 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 222 |
-
label="Model type",
|
| 223 |
-
multiselect=False,
|
| 224 |
-
value=None,
|
| 225 |
-
interactive=True,
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
with gr.Column():
|
| 229 |
-
precision = gr.Dropdown(
|
| 230 |
-
choices=[i.value for i in Precision if i != Precision.Unknown],
|
| 231 |
-
label="Precision",
|
| 232 |
-
multiselect=False,
|
| 233 |
-
value="float16",
|
| 234 |
-
interactive=True,
|
| 235 |
-
)
|
| 236 |
-
weight_type = gr.Dropdown(
|
| 237 |
-
choices=[i.value for i in WeightType],
|
| 238 |
-
label="Weights type",
|
| 239 |
-
multiselect=False,
|
| 240 |
-
value="Original",
|
| 241 |
-
interactive=True,
|
| 242 |
-
)
|
| 243 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 244 |
-
|
| 245 |
-
submit_button = gr.Button("Submit Eval")
|
| 246 |
-
submission_result = gr.Markdown()
|
| 247 |
-
submit_button.click(
|
| 248 |
-
add_new_eval,
|
| 249 |
-
[
|
| 250 |
-
model_name_textbox,
|
| 251 |
-
base_model_name_textbox,
|
| 252 |
-
revision_name_textbox,
|
| 253 |
-
precision,
|
| 254 |
-
weight_type,
|
| 255 |
-
model_type,
|
| 256 |
-
],
|
| 257 |
-
submission_result,
|
| 258 |
)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
show_copy_button=True,
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
scheduler = BackgroundScheduler()
|
| 271 |
-
# Run every 30 minutes instead of every 30 seconds (1800 seconds = 30 minutes)
|
| 272 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 273 |
-
scheduler.start()
|
| 274 |
-
|
| 275 |
-
# Launch with a more descriptive message
|
| 276 |
-
demo.queue(default_concurrency_limit=40).launch(
|
| 277 |
-
debug=True,
|
| 278 |
-
share=False,
|
| 279 |
-
show_error=True
|
| 280 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard
|
| 3 |
import pandas as pd
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
+
from src.populate import get_leaderboard_df
|
| 7 |
+
from src.display.utils import COLUMNS, COLS, BENCHMARK_COLS
|
| 8 |
+
from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Ensure directories exist
|
|
|
|
| 11 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
| 12 |
|
| 13 |
+
# Minimal CSS to avoid conflicts
|
| 14 |
+
minimal_css = """
|
| 15 |
+
.container {
|
| 16 |
+
max-width: 1200px;
|
| 17 |
+
margin: 0 auto;
|
| 18 |
+
}
|
| 19 |
+
.header {
|
| 20 |
+
text-align: center;
|
| 21 |
+
margin-bottom: 20px;
|
| 22 |
+
}
|
| 23 |
+
"""
|
| 24 |
|
| 25 |
try:
|
| 26 |
+
# Load the leaderboard DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 28 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
| 29 |
+
print("Sample row:", LEADERBOARD_DF.iloc[0].to_dict() if not LEADERBOARD_DF.empty else "Empty DataFrame")
|
| 30 |
+
|
| 31 |
+
# If DataFrame is empty, create a sample
|
| 32 |
+
if LEADERBOARD_DF.empty:
|
| 33 |
+
print("Creating sample data for testing")
|
|
|
|
| 34 |
LEADERBOARD_DF = pd.DataFrame([{
|
| 35 |
+
"model_name": "Sample Model",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
"average": 75.5,
|
| 37 |
+
"model_type": "Encoder",
|
| 38 |
+
"precision": "float16"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
}])
|
| 40 |
except Exception as e:
|
| 41 |
print(f"Error loading leaderboard data: {e}")
|
| 42 |
+
# Create a minimal DataFrame
|
| 43 |
LEADERBOARD_DF = pd.DataFrame([{
|
| 44 |
"model_name": "Error Loading Data",
|
| 45 |
"average": 0
|
| 46 |
}])
|
| 47 |
|
| 48 |
+
# Create a very simple app with just the leaderboard
|
| 49 |
+
with gr.Blocks(css=minimal_css) as demo:
|
| 50 |
+
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
| 51 |
+
|
| 52 |
+
with gr.Tabs() as tabs:
|
| 53 |
+
with gr.TabItem("LLM Benchmark"):
|
| 54 |
+
# Add debug output
|
| 55 |
+
with gr.Accordion("Debug Info", open=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
gr.Markdown(f"DataFrame Shape: {LEADERBOARD_DF.shape}")
|
| 57 |
+
gr.Markdown(f"Column Names: {', '.join(LEADERBOARD_DF.columns[:10])}...")
|
| 58 |
+
|
| 59 |
+
# Create a simplified version of the leaderboard
|
| 60 |
+
leaderboard = Leaderboard(
|
| 61 |
+
value=LEADERBOARD_DF,
|
| 62 |
+
interactive=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
+
|
| 65 |
+
with gr.TabItem("About"):
|
| 66 |
+
gr.Markdown("This is a benchmark for Arabic language models.")
|
| 67 |
+
|
| 68 |
+
with gr.TabItem("Submit"):
|
| 69 |
+
gr.Markdown("Submission form will be available here.")
|
| 70 |
+
|
| 71 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|