update app.py
Browse files
app.py
CHANGED
@@ -1,280 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
import json
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
from src.about import (
|
10 |
-
CITATION_BUTTON_LABEL,
|
11 |
-
CITATION_BUTTON_TEXT,
|
12 |
-
EVALUATION_QUEUE_TEXT,
|
13 |
-
INTRODUCTION_TEXT,
|
14 |
-
LLM_BENCHMARKS_TEXT,
|
15 |
-
TITLE,
|
16 |
-
)
|
17 |
-
from src.display.css_html_js import custom_css
|
18 |
-
from src.display.utils import (
|
19 |
-
COLUMNS,
|
20 |
-
COLS,
|
21 |
-
BENCHMARK_COLS,
|
22 |
-
EVAL_COLS,
|
23 |
-
EVAL_TYPES,
|
24 |
-
ModelType,
|
25 |
-
WeightType,
|
26 |
-
Precision
|
27 |
-
)
|
28 |
-
|
29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
-
from src.submission.submit import add_new_eval
|
32 |
-
|
33 |
-
def restart_space():
|
34 |
-
try:
|
35 |
-
API.restart_space(repo_id=REPO_ID)
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error restarting space: {e}")
|
38 |
|
39 |
# Ensure directories exist
|
40 |
-
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
|
41 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
try:
|
56 |
-
|
57 |
-
snapshot_download(
|
58 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset",
|
59 |
-
tqdm_class=None, etag_timeout=30, token=TOKEN
|
60 |
-
)
|
61 |
-
print("Successfully downloaded evaluation results")
|
62 |
-
except Exception as e:
|
63 |
-
print(f"Error downloading evaluation results: {e}")
|
64 |
-
# Don't restart immediately, try to continue
|
65 |
-
|
66 |
-
# Add fallback data in case the remote fetch fails
|
67 |
-
fallback_data = False
|
68 |
-
if not os.listdir(EVAL_RESULTS_PATH):
|
69 |
-
print("No evaluation results found. Creating sample data for testing.")
|
70 |
-
fallback_data = True
|
71 |
-
# Create a sample result file for testing
|
72 |
-
sample_data = {
|
73 |
-
"config": {
|
74 |
-
"model_name": "Sample Arabic Model",
|
75 |
-
"submitted_time": "2023-01-01",
|
76 |
-
"base_model": "bert-base-arabic",
|
77 |
-
"revision": "main",
|
78 |
-
"precision": "float16",
|
79 |
-
"weight_type": "Original",
|
80 |
-
"model_type": "Encoder",
|
81 |
-
"license": "Apache-2.0",
|
82 |
-
"params": 110000000,
|
83 |
-
"still_on_hub": True
|
84 |
-
},
|
85 |
-
"results": {
|
86 |
-
"average": 75.5,
|
87 |
-
"abstract_algebra": 70.2,
|
88 |
-
"anatomy": 72.5,
|
89 |
-
"astronomy": 80.1,
|
90 |
-
"business_ethics": 68.3,
|
91 |
-
"clinical_knowledge": 75.0,
|
92 |
-
"college_biology": 77.4,
|
93 |
-
"college_chemistry": 74.2
|
94 |
-
}
|
95 |
-
}
|
96 |
-
|
97 |
-
with open(os.path.join(EVAL_RESULTS_PATH, "sample_result.json"), 'w') as f:
|
98 |
-
json.dump(sample_data, f)
|
99 |
-
|
100 |
-
# Load the leaderboard DataFrame
|
101 |
-
try:
|
102 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
103 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
104 |
-
print("
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
print("Creating minimal sample data for leaderboard")
|
110 |
LEADERBOARD_DF = pd.DataFrame([{
|
111 |
-
"model_name": "Sample
|
112 |
-
"submitted_time": "2023-01-01",
|
113 |
-
"base_model": "bert-base-arabic",
|
114 |
-
"revision": "main",
|
115 |
-
"precision": "float16",
|
116 |
-
"weight_type": "Original",
|
117 |
-
"model_type": "Encoder",
|
118 |
-
"license": "Apache-2.0",
|
119 |
-
"params": 110000000,
|
120 |
-
"still_on_hub": True,
|
121 |
"average": 75.5,
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"astronomy": 80.1,
|
125 |
-
"business_ethics": 68.3,
|
126 |
-
"clinical_knowledge": 75.0,
|
127 |
-
"college_biology": 77.4,
|
128 |
-
"college_chemistry": 74.2
|
129 |
}])
|
130 |
except Exception as e:
|
131 |
print(f"Error loading leaderboard data: {e}")
|
132 |
-
# Create a minimal
|
133 |
LEADERBOARD_DF = pd.DataFrame([{
|
134 |
"model_name": "Error Loading Data",
|
135 |
"average": 0
|
136 |
}])
|
137 |
|
138 |
-
#
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
pending_eval_queue_df = pd.DataFrame(columns=EVAL_COLS)
|
147 |
-
|
148 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
149 |
-
gr.HTML(TITLE)
|
150 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
151 |
-
|
152 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
153 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab", id=0):
|
154 |
-
if LEADERBOARD_DF.empty:
|
155 |
-
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
156 |
-
else:
|
157 |
-
# Debug information as Markdown
|
158 |
-
gr.Markdown("### Leaderboard Data Debug Info")
|
159 |
gr.Markdown(f"DataFrame Shape: {LEADERBOARD_DF.shape}")
|
160 |
-
gr.Markdown(f"
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# Ensure "model_name" is included
|
167 |
-
if "model_name" not in default_selection:
|
168 |
-
default_selection.insert(0, "model_name")
|
169 |
-
print("Default Selection after ensuring 'model_name':", default_selection)
|
170 |
-
|
171 |
-
# Make sure all columns exist in the DataFrame
|
172 |
-
for col in default_selection:
|
173 |
-
if col not in LEADERBOARD_DF.columns:
|
174 |
-
print(f"Warning: Column '{col}' not found in DataFrame. Adding empty column.")
|
175 |
-
LEADERBOARD_DF[col] = None
|
176 |
-
|
177 |
-
print("LEADERBOARD_DF dtypes:\n", LEADERBOARD_DF.dtypes)
|
178 |
-
|
179 |
-
# Create the leaderboard component
|
180 |
-
leaderboard = Leaderboard(
|
181 |
-
value=LEADERBOARD_DF,
|
182 |
-
datatype=[col.type for col in COLUMNS],
|
183 |
-
select_columns=SelectColumns(
|
184 |
-
default_selection=default_selection,
|
185 |
-
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
186 |
-
label="Select Columns to Display:",
|
187 |
-
),
|
188 |
-
search_columns=["model_name", "license"],
|
189 |
-
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
190 |
-
filter_columns=[
|
191 |
-
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
192 |
-
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
|
193 |
-
ColumnFilter(
|
194 |
-
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
|
195 |
-
),
|
196 |
-
],
|
197 |
-
bool_checkboxgroup_label="Hide models",
|
198 |
-
interactive=True, # Change to True to enable interaction
|
199 |
-
)
|
200 |
-
|
201 |
-
with gr.TabItem("📝 About", elem_id="about-tab", id=1):
|
202 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
203 |
-
|
204 |
-
with gr.TabItem("🚀 Submit here!", elem_id="submit-tab", id=2):
|
205 |
-
with gr.Column():
|
206 |
-
with gr.Row():
|
207 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
208 |
-
|
209 |
-
# Since the evaluation queues are empty, display a message
|
210 |
-
with gr.Column():
|
211 |
-
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
|
212 |
-
|
213 |
-
with gr.Row():
|
214 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
215 |
-
|
216 |
-
with gr.Row():
|
217 |
-
with gr.Column():
|
218 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
219 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
220 |
-
model_type = gr.Dropdown(
|
221 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
222 |
-
label="Model type",
|
223 |
-
multiselect=False,
|
224 |
-
value=None,
|
225 |
-
interactive=True,
|
226 |
-
)
|
227 |
-
|
228 |
-
with gr.Column():
|
229 |
-
precision = gr.Dropdown(
|
230 |
-
choices=[i.value for i in Precision if i != Precision.Unknown],
|
231 |
-
label="Precision",
|
232 |
-
multiselect=False,
|
233 |
-
value="float16",
|
234 |
-
interactive=True,
|
235 |
-
)
|
236 |
-
weight_type = gr.Dropdown(
|
237 |
-
choices=[i.value for i in WeightType],
|
238 |
-
label="Weights type",
|
239 |
-
multiselect=False,
|
240 |
-
value="Original",
|
241 |
-
interactive=True,
|
242 |
-
)
|
243 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
244 |
-
|
245 |
-
submit_button = gr.Button("Submit Eval")
|
246 |
-
submission_result = gr.Markdown()
|
247 |
-
submit_button.click(
|
248 |
-
add_new_eval,
|
249 |
-
[
|
250 |
-
model_name_textbox,
|
251 |
-
base_model_name_textbox,
|
252 |
-
revision_name_textbox,
|
253 |
-
precision,
|
254 |
-
weight_type,
|
255 |
-
model_type,
|
256 |
-
],
|
257 |
-
submission_result,
|
258 |
)
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
show_copy_button=True,
|
268 |
-
)
|
269 |
-
|
270 |
-
scheduler = BackgroundScheduler()
|
271 |
-
# Run every 30 minutes instead of every 30 seconds (1800 seconds = 30 minutes)
|
272 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
273 |
-
scheduler.start()
|
274 |
-
|
275 |
-
# Launch with a more descriptive message
|
276 |
-
demo.queue(default_concurrency_limit=40).launch(
|
277 |
-
debug=True,
|
278 |
-
share=False,
|
279 |
-
show_error=True
|
280 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
import json
|
6 |
+
from src.populate import get_leaderboard_df
|
7 |
+
from src.display.utils import COLUMNS, COLS, BENCHMARK_COLS
|
8 |
+
from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Ensure directories exist
|
|
|
11 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
12 |
|
13 |
+
# Minimal CSS to avoid conflicts
|
14 |
+
minimal_css = """
|
15 |
+
.container {
|
16 |
+
max-width: 1200px;
|
17 |
+
margin: 0 auto;
|
18 |
+
}
|
19 |
+
.header {
|
20 |
+
text-align: center;
|
21 |
+
margin-bottom: 20px;
|
22 |
+
}
|
23 |
+
"""
|
24 |
|
25 |
try:
|
26 |
+
# Load the leaderboard DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
28 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
29 |
+
print("Sample row:", LEADERBOARD_DF.iloc[0].to_dict() if not LEADERBOARD_DF.empty else "Empty DataFrame")
|
30 |
+
|
31 |
+
# If DataFrame is empty, create a sample
|
32 |
+
if LEADERBOARD_DF.empty:
|
33 |
+
print("Creating sample data for testing")
|
|
|
34 |
LEADERBOARD_DF = pd.DataFrame([{
|
35 |
+
"model_name": "Sample Model",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"average": 75.5,
|
37 |
+
"model_type": "Encoder",
|
38 |
+
"precision": "float16"
|
|
|
|
|
|
|
|
|
|
|
39 |
}])
|
40 |
except Exception as e:
|
41 |
print(f"Error loading leaderboard data: {e}")
|
42 |
+
# Create a minimal DataFrame
|
43 |
LEADERBOARD_DF = pd.DataFrame([{
|
44 |
"model_name": "Error Loading Data",
|
45 |
"average": 0
|
46 |
}])
|
47 |
|
48 |
+
# Create a very simple app with just the leaderboard
|
49 |
+
with gr.Blocks(css=minimal_css) as demo:
|
50 |
+
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
51 |
+
|
52 |
+
with gr.Tabs() as tabs:
|
53 |
+
with gr.TabItem("LLM Benchmark"):
|
54 |
+
# Add debug output
|
55 |
+
with gr.Accordion("Debug Info", open=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
gr.Markdown(f"DataFrame Shape: {LEADERBOARD_DF.shape}")
|
57 |
+
gr.Markdown(f"Column Names: {', '.join(LEADERBOARD_DF.columns[:10])}...")
|
58 |
+
|
59 |
+
# Create a simplified version of the leaderboard
|
60 |
+
leaderboard = Leaderboard(
|
61 |
+
value=LEADERBOARD_DF,
|
62 |
+
interactive=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
+
|
65 |
+
with gr.TabItem("About"):
|
66 |
+
gr.Markdown("This is a benchmark for Arabic language models.")
|
67 |
+
|
68 |
+
with gr.TabItem("Submit"):
|
69 |
+
gr.Markdown("Submission form will be available here.")
|
70 |
+
|
71 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|