update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
import json
|
@@ -10,7 +9,7 @@ from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
|
|
10 |
# Ensure directories exist
|
11 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
12 |
|
13 |
-
# Minimal CSS
|
14 |
minimal_css = """
|
15 |
.container {
|
16 |
max-width: 1200px;
|
@@ -26,7 +25,6 @@ try:
|
|
26 |
# Load the leaderboard DataFrame
|
27 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
28 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
29 |
-
print("Sample row:", LEADERBOARD_DF.iloc[0].to_dict() if not LEADERBOARD_DF.empty else "Empty DataFrame")
|
30 |
|
31 |
# If DataFrame is empty, create a sample
|
32 |
if LEADERBOARD_DF.empty:
|
@@ -45,7 +43,29 @@ except Exception as e:
|
|
45 |
"average": 0
|
46 |
}])
|
47 |
|
48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with gr.Blocks(css=minimal_css) as demo:
|
50 |
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
51 |
|
@@ -53,15 +73,75 @@ with gr.Blocks(css=minimal_css) as demo:
|
|
53 |
with gr.TabItem("LLM Benchmark"):
|
54 |
# Add debug output
|
55 |
with gr.Accordion("Debug Info", open=True):
|
56 |
-
gr.Markdown(f"DataFrame Shape: {
|
57 |
-
gr.Markdown(f"Column Names: {', '.join(
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
value=
|
62 |
-
interactive=
|
|
|
|
|
63 |
)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
with gr.TabItem("About"):
|
66 |
gr.Markdown("This is a benchmark for Arabic language models.")
|
67 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
import json
|
|
|
9 |
# Ensure directories exist
|
10 |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
11 |
|
12 |
+
# Minimal CSS
|
13 |
minimal_css = """
|
14 |
.container {
|
15 |
max-width: 1200px;
|
|
|
25 |
# Load the leaderboard DataFrame
|
26 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
27 |
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)
|
|
|
28 |
|
29 |
# If DataFrame is empty, create a sample
|
30 |
if LEADERBOARD_DF.empty:
|
|
|
43 |
"average": 0
|
44 |
}])
|
45 |
|
46 |
+
# Select common columns for display
|
47 |
+
display_cols = ["model_name", "average"]
|
48 |
+
# Add some subject columns if they exist
|
49 |
+
subject_cols = ["abstract_algebra", "anatomy", "astronomy", "business_ethics"]
|
50 |
+
for col in subject_cols:
|
51 |
+
if col in LEADERBOARD_DF.columns:
|
52 |
+
display_cols.append(col)
|
53 |
+
# Add model metadata if they exist
|
54 |
+
meta_cols = ["model_type", "precision", "weight_type", "license"]
|
55 |
+
for col in meta_cols:
|
56 |
+
if col in LEADERBOARD_DF.columns:
|
57 |
+
display_cols.append(col)
|
58 |
+
|
59 |
+
# Filter the DataFrame to only include display columns that actually exist
|
60 |
+
actual_display_cols = [col for col in display_cols if col in LEADERBOARD_DF.columns]
|
61 |
+
display_df = LEADERBOARD_DF[actual_display_cols].copy()
|
62 |
+
|
63 |
+
# Round numeric columns for display
|
64 |
+
for col in display_df.columns:
|
65 |
+
if pd.api.types.is_numeric_dtype(display_df[col]):
|
66 |
+
display_df[col] = display_df[col].round(2)
|
67 |
+
|
68 |
+
# Create a very simple app using standard DataTable instead of Leaderboard
|
69 |
with gr.Blocks(css=minimal_css) as demo:
|
70 |
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
71 |
|
|
|
73 |
with gr.TabItem("LLM Benchmark"):
|
74 |
# Add debug output
|
75 |
with gr.Accordion("Debug Info", open=True):
|
76 |
+
gr.Markdown(f"DataFrame Shape: {display_df.shape}")
|
77 |
+
gr.Markdown(f"Column Names: {', '.join(display_df.columns)}")
|
78 |
|
79 |
+
# Use standard DataTable instead of Leaderboard
|
80 |
+
datatable = gr.DataFrame(
|
81 |
+
value=display_df,
|
82 |
+
interactive=False,
|
83 |
+
wrap=True,
|
84 |
+
column_widths=[200] + [100] * (len(actual_display_cols) - 1)
|
85 |
)
|
86 |
|
87 |
+
# Add filter functionality using dropdowns
|
88 |
+
with gr.Row():
|
89 |
+
if "model_type" in display_df.columns:
|
90 |
+
model_types = ["All"] + sorted(display_df["model_type"].unique().tolist())
|
91 |
+
model_type_filter = gr.Dropdown(
|
92 |
+
choices=model_types,
|
93 |
+
value="All",
|
94 |
+
label="Filter by Model Type",
|
95 |
+
interactive=True
|
96 |
+
)
|
97 |
+
|
98 |
+
if "precision" in display_df.columns:
|
99 |
+
precisions = ["All"] + sorted(display_df["precision"].unique().tolist())
|
100 |
+
precision_filter = gr.Dropdown(
|
101 |
+
choices=precisions,
|
102 |
+
value="All",
|
103 |
+
label="Filter by Precision",
|
104 |
+
interactive=True
|
105 |
+
)
|
106 |
+
|
107 |
+
search_input = gr.Textbox(
|
108 |
+
label="Search by Model Name",
|
109 |
+
placeholder="Enter model name...",
|
110 |
+
interactive=True
|
111 |
+
)
|
112 |
+
|
113 |
+
# Filter function
|
114 |
+
def filter_data(model_type, precision, search):
|
115 |
+
filtered_df = display_df.copy()
|
116 |
+
|
117 |
+
if model_type != "All" and "model_type" in filtered_df.columns:
|
118 |
+
filtered_df = filtered_df[filtered_df["model_type"] == model_type]
|
119 |
+
|
120 |
+
if precision != "All" and "precision" in filtered_df.columns:
|
121 |
+
filtered_df = filtered_df[filtered_df["precision"] == precision]
|
122 |
+
|
123 |
+
if search and "model_name" in filtered_df.columns:
|
124 |
+
filtered_df = filtered_df[filtered_df["model_name"].str.contains(search, case=False)]
|
125 |
+
|
126 |
+
return filtered_df
|
127 |
+
|
128 |
+
# Connect filters
|
129 |
+
filter_inputs = []
|
130 |
+
if "model_type" in display_df.columns:
|
131 |
+
filter_inputs.append(model_type_filter)
|
132 |
+
if "precision" in display_df.columns:
|
133 |
+
filter_inputs.append(precision_filter)
|
134 |
+
filter_inputs.append(search_input)
|
135 |
+
|
136 |
+
# If we have filter inputs, connect them
|
137 |
+
if filter_inputs:
|
138 |
+
for input_component in filter_inputs:
|
139 |
+
input_component.change(
|
140 |
+
filter_data,
|
141 |
+
inputs=filter_inputs,
|
142 |
+
outputs=datatable
|
143 |
+
)
|
144 |
+
|
145 |
with gr.TabItem("About"):
|
146 |
gr.Markdown("This is a benchmark for Arabic language models.")
|
147 |
|