Update app.py
Browse files
app.py
CHANGED
@@ -1,263 +1,148 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
import
|
5 |
-
from src.populate import get_leaderboard_df
|
6 |
-
from src.display.utils import COLUMNS, COLS, BENCHMARK_COLS, EVAL_COLS
|
7 |
-
from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
.
|
16 |
-
max-width: 1200px;
|
17 |
-
margin: 0 auto;
|
18 |
-
}
|
19 |
-
.header {
|
20 |
-
text-align: center;
|
21 |
-
margin-bottom: 20px;
|
22 |
-
}
|
23 |
-
"""
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
if not os.path.exists(EVAL_RESULTS_PATH):
|
28 |
-
print(f"Path does not exist: {EVAL_RESULTS_PATH}")
|
29 |
-
return pd.DataFrame()
|
30 |
-
|
31 |
-
result_files = [
|
32 |
-
os.path.join(EVAL_RESULTS_PATH, f)
|
33 |
-
for f in os.listdir(EVAL_RESULTS_PATH)
|
34 |
-
if f.endswith('.json')
|
35 |
-
]
|
36 |
-
|
37 |
-
print(f"Found {len(result_files)} JSON files")
|
38 |
-
|
39 |
-
data_list = []
|
40 |
-
for file in result_files:
|
41 |
-
try:
|
42 |
-
with open(file, 'r') as f:
|
43 |
-
data = json.load(f)
|
44 |
-
|
45 |
-
flattened_data = {}
|
46 |
-
# Extract both config and results
|
47 |
-
flattened_data.update(data.get('config', {}))
|
48 |
-
flattened_data.update(data.get('results', {}))
|
49 |
-
data_list.append(flattened_data)
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Error loading file {file}: {e}")
|
52 |
-
|
53 |
-
if not data_list:
|
54 |
-
print("No data loaded from JSON files")
|
55 |
-
return pd.DataFrame()
|
56 |
-
|
57 |
-
df = pd.DataFrame(data_list)
|
58 |
-
print(f"Successfully loaded DataFrame with shape: {df.shape}")
|
59 |
-
return df
|
60 |
|
61 |
-
|
62 |
try:
|
63 |
-
print(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Error in data loading: {e}")
|
83 |
-
# Create a minimal DataFrame
|
84 |
-
LEADERBOARD_DF = pd.DataFrame([{
|
85 |
-
"model_name": "Error Loading Data",
|
86 |
-
"average": 0
|
87 |
-
}])
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
print(f"Final DataFrame columns: {LEADERBOARD_DF.columns.tolist()}")
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
subject_cols = [
|
98 |
-
"abstract_algebra", "anatomy", "astronomy", "business_ethics",
|
99 |
-
"college_biology", "college_chemistry", "college_computer_science",
|
100 |
-
"high_school_mathematics", "machine_learning"
|
101 |
-
]
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
display_df = display_df.sort_values(by="average", ascending=False)
|
128 |
-
else:
|
129 |
-
display_df = LEADERBOARD_DF
|
130 |
|
131 |
-
# Create the app
|
132 |
-
with gr.Blocks(css=minimal_css) as demo:
|
133 |
-
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
134 |
-
|
135 |
-
with gr.Tabs() as tabs:
|
136 |
-
with gr.TabItem("LLM Benchmark"):
|
137 |
-
# Add debug output
|
138 |
-
with gr.Accordion("Debug Info", open=True):
|
139 |
-
gr.Markdown(f"DataFrame Shape: {display_df.shape}")
|
140 |
-
gr.Markdown(f"Column Names: {', '.join(display_df.columns[:10])}" + ("..." if len(display_df.columns) > 10 else ""))
|
141 |
-
|
142 |
-
# Use standard DataTable
|
143 |
-
datatable = gr.DataFrame(
|
144 |
-
value=display_df,
|
145 |
-
interactive=False,
|
146 |
-
wrap=True
|
147 |
-
)
|
148 |
-
|
149 |
-
# Add filter functionality using dropdowns
|
150 |
with gr.Row():
|
151 |
-
|
152 |
-
model_types = ["All"] + sorted(display_df["model_type"].dropna().unique().tolist())
|
153 |
-
model_type_filter = gr.Dropdown(
|
154 |
-
choices=model_types,
|
155 |
-
value="All",
|
156 |
-
label="Filter by Model Type",
|
157 |
-
interactive=True
|
158 |
-
)
|
159 |
|
160 |
-
if "precision" in display_df.columns and not display_df.empty:
|
161 |
-
precisions = ["All"] + sorted(display_df["precision"].dropna().unique().tolist())
|
162 |
-
precision_filter = gr.Dropdown(
|
163 |
-
choices=precisions,
|
164 |
-
value="All",
|
165 |
-
label="Filter by Precision",
|
166 |
-
interactive=True
|
167 |
-
)
|
168 |
-
|
169 |
-
search_input = gr.Textbox(
|
170 |
-
label="Search by Model Name",
|
171 |
-
placeholder="Enter model name...",
|
172 |
-
interactive=True
|
173 |
-
)
|
174 |
-
|
175 |
-
# Filter function
|
176 |
-
def filter_data(model_type, precision, search):
|
177 |
-
filtered_df = display_df.copy()
|
178 |
-
|
179 |
-
if model_type != "All" and "model_type" in filtered_df.columns:
|
180 |
-
filtered_df = filtered_df[filtered_df["model_type"] == model_type]
|
181 |
-
|
182 |
-
if precision != "All" and "precision" in filtered_df.columns:
|
183 |
-
filtered_df = filtered_df[filtered_df["precision"] == precision]
|
184 |
-
|
185 |
-
if search and "model_name" in filtered_df.columns:
|
186 |
-
filtered_df = filtered_df[filtered_df["model_name"].str.contains(search, case=False)]
|
187 |
-
|
188 |
-
return filtered_df
|
189 |
-
|
190 |
-
# Connect filters
|
191 |
-
filter_inputs = []
|
192 |
-
if "model_type" in display_df.columns and not display_df.empty:
|
193 |
-
filter_inputs.append(model_type_filter)
|
194 |
-
if "precision" in display_df.columns and not display_df.empty:
|
195 |
-
filter_inputs.append(precision_filter)
|
196 |
-
filter_inputs.append(search_input)
|
197 |
-
|
198 |
-
# If we have filter inputs, connect them
|
199 |
-
if filter_inputs:
|
200 |
-
for input_component in filter_inputs:
|
201 |
-
input_component.change(
|
202 |
-
filter_data,
|
203 |
-
inputs=filter_inputs,
|
204 |
-
outputs=datatable
|
205 |
-
)
|
206 |
-
|
207 |
-
with gr.TabItem("About"):
|
208 |
-
gr.Markdown("""
|
209 |
-
# About ILMAAM
|
210 |
-
|
211 |
-
The **Index for Language Models for Arabic Assessment on Multitasks (ILMAAM)** showcases the performance of various Arabic LLMs on the newly released MMMLU OpenAI Benchmark across different subjects.
|
212 |
-
|
213 |
-
This benchmark evaluates language models specifically for Arabic language capabilities.
|
214 |
-
""")
|
215 |
-
|
216 |
-
with gr.TabItem("Submit"):
|
217 |
-
gr.Markdown("""
|
218 |
-
# Submit Your Model
|
219 |
-
|
220 |
-
You can submit your Arabic language model for benchmark evaluation. Fill out the form below:
|
221 |
-
""")
|
222 |
-
|
223 |
with gr.Row():
|
224 |
with gr.Column():
|
225 |
model_name_textbox = gr.Textbox(label="Model name")
|
226 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
227 |
model_type = gr.Dropdown(
|
228 |
-
choices=["
|
229 |
label="Model type",
|
230 |
multiselect=False,
|
231 |
-
|
|
|
232 |
)
|
233 |
|
234 |
with gr.Column():
|
235 |
precision = gr.Dropdown(
|
236 |
-
choices=[
|
237 |
label="Precision",
|
238 |
multiselect=False,
|
239 |
value="float16",
|
240 |
-
interactive=True
|
241 |
)
|
242 |
weight_type = gr.Dropdown(
|
243 |
-
choices=[
|
244 |
label="Weights type",
|
245 |
multiselect=False,
|
246 |
value="Original",
|
247 |
-
interactive=True
|
248 |
)
|
249 |
-
base_model_name_textbox = gr.Textbox(label="Base model (
|
250 |
|
251 |
-
submit_button = gr.Button("Submit
|
252 |
submission_result = gr.Markdown()
|
253 |
-
|
254 |
-
def mock_submission(model_name, base_model, revision, precision, weight_type, model_type):
|
255 |
-
if not model_name:
|
256 |
-
return "Error: Model name is required."
|
257 |
-
return f"Model '{model_name}' submitted successfully! It will be evaluated soon."
|
258 |
-
|
259 |
submit_button.click(
|
260 |
-
|
261 |
[
|
262 |
model_name_textbox,
|
263 |
base_model_name_textbox,
|
@@ -269,4 +154,17 @@ with gr.Blocks(css=minimal_css) as demo:
|
|
269 |
submission_result,
|
270 |
)
|
271 |
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
6 |
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
from src.display.css_html_js import custom_css
|
16 |
+
from src.display.utils import (
|
17 |
+
COLUMNS,
|
18 |
+
COLS,
|
19 |
+
BENCHMARK_COLS,
|
20 |
+
EVAL_COLS,
|
21 |
+
EVAL_TYPES,
|
22 |
+
ModelType,
|
23 |
+
WeightType,
|
24 |
+
Precision
|
25 |
+
)
|
26 |
|
27 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
+
from src.submission.submit import add_new_eval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def restart_space():
|
32 |
+
API.restart_space(repo_id=REPO_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Space initialization
|
35 |
try:
|
36 |
+
print(EVAL_REQUESTS_PATH)
|
37 |
+
snapshot_download(
|
38 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
39 |
+
)
|
40 |
+
except Exception:
|
41 |
+
restart_space()
|
42 |
+
try:
|
43 |
+
print(EVAL_RESULTS_PATH)
|
44 |
+
snapshot_download(
|
45 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
46 |
+
)
|
47 |
+
except Exception:
|
48 |
+
restart_space()
|
49 |
+
|
50 |
+
# Load the leaderboard DataFrame
|
51 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
52 |
+
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug
|
53 |
+
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Load the evaluation queue DataFrames
|
56 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
57 |
|
58 |
+
demo = gr.Blocks(css=custom_css)
|
59 |
+
with demo:
|
60 |
+
gr.HTML(TITLE)
|
61 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
64 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
65 |
+
if LEADERBOARD_DF.empty:
|
66 |
+
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
67 |
+
else:
|
68 |
+
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
|
69 |
+
print("Default Selection before ensuring 'model_name':", default_selection) # Debug
|
70 |
|
71 |
+
# Ensure "model_name" is included
|
72 |
+
if "model_name" not in default_selection:
|
73 |
+
default_selection.insert(0, "model_name")
|
74 |
+
print("Default Selection after ensuring 'model_name':", default_selection) # Debug
|
75 |
|
76 |
+
leaderboard = Leaderboard(
|
77 |
+
value=LEADERBOARD_DF,
|
78 |
+
datatype=[col.type for col in COLUMNS],
|
79 |
+
select_columns=SelectColumns(
|
80 |
+
default_selection=default_selection,
|
81 |
+
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
82 |
+
label="Select Columns to Display:",
|
83 |
+
),
|
84 |
+
search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]], # Updated to 'model_name'
|
85 |
+
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
86 |
+
filter_columns=[
|
87 |
+
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
88 |
+
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
|
89 |
+
ColumnFilter(
|
90 |
+
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
|
91 |
+
),
|
92 |
+
],
|
93 |
+
bool_checkboxgroup_label="Hide models",
|
94 |
+
interactive=False,
|
95 |
+
)
|
96 |
+
# No need to call leaderboard.render() since it's created within the Gradio context
|
97 |
|
98 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
99 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
100 |
+
|
101 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Row():
|
104 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
105 |
+
|
106 |
+
# Since the evaluation queues are empty, display a message
|
107 |
+
with gr.Column():
|
108 |
+
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
with gr.Row():
|
111 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
with gr.Column():
|
115 |
model_name_textbox = gr.Textbox(label="Model name")
|
116 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
117 |
model_type = gr.Dropdown(
|
118 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
119 |
label="Model type",
|
120 |
multiselect=False,
|
121 |
+
value=None,
|
122 |
+
interactive=True,
|
123 |
)
|
124 |
|
125 |
with gr.Column():
|
126 |
precision = gr.Dropdown(
|
127 |
+
choices=[i.value for i in Precision if i != Precision.Unknown],
|
128 |
label="Precision",
|
129 |
multiselect=False,
|
130 |
value="float16",
|
131 |
+
interactive=True,
|
132 |
)
|
133 |
weight_type = gr.Dropdown(
|
134 |
+
choices=[i.value for i in WeightType],
|
135 |
label="Weights type",
|
136 |
multiselect=False,
|
137 |
value="Original",
|
138 |
+
interactive=True,
|
139 |
)
|
140 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
141 |
|
142 |
+
submit_button = gr.Button("Submit Eval")
|
143 |
submission_result = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
submit_button.click(
|
145 |
+
add_new_eval,
|
146 |
[
|
147 |
model_name_textbox,
|
148 |
base_model_name_textbox,
|
|
|
154 |
submission_result,
|
155 |
)
|
156 |
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Accordion("π Citation", open=False):
|
159 |
+
citation_button = gr.Textbox(
|
160 |
+
value=CITATION_BUTTON_TEXT,
|
161 |
+
label=CITATION_BUTTON_LABEL,
|
162 |
+
lines=20,
|
163 |
+
elem_id="citation-button",
|
164 |
+
show_copy_button=True,
|
165 |
+
)
|
166 |
+
|
167 |
+
scheduler = BackgroundScheduler()
|
168 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
169 |
+
scheduler.start()
|
170 |
+
demo.queue(default_concurrency_limit=40).launch()
|