Update app.py
Browse files
app.py
CHANGED
|
@@ -1,263 +1,148 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
from src.populate import get_leaderboard_df
|
| 6 |
-
from src.display.utils import COLUMNS, COLS, BENCHMARK_COLS, EVAL_COLS
|
| 7 |
-
from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
.
|
| 16 |
-
max-width: 1200px;
|
| 17 |
-
margin: 0 auto;
|
| 18 |
-
}
|
| 19 |
-
.header {
|
| 20 |
-
text-align: center;
|
| 21 |
-
margin-bottom: 20px;
|
| 22 |
-
}
|
| 23 |
-
"""
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
if not os.path.exists(EVAL_RESULTS_PATH):
|
| 28 |
-
print(f"Path does not exist: {EVAL_RESULTS_PATH}")
|
| 29 |
-
return pd.DataFrame()
|
| 30 |
-
|
| 31 |
-
result_files = [
|
| 32 |
-
os.path.join(EVAL_RESULTS_PATH, f)
|
| 33 |
-
for f in os.listdir(EVAL_RESULTS_PATH)
|
| 34 |
-
if f.endswith('.json')
|
| 35 |
-
]
|
| 36 |
-
|
| 37 |
-
print(f"Found {len(result_files)} JSON files")
|
| 38 |
-
|
| 39 |
-
data_list = []
|
| 40 |
-
for file in result_files:
|
| 41 |
-
try:
|
| 42 |
-
with open(file, 'r') as f:
|
| 43 |
-
data = json.load(f)
|
| 44 |
-
|
| 45 |
-
flattened_data = {}
|
| 46 |
-
# Extract both config and results
|
| 47 |
-
flattened_data.update(data.get('config', {}))
|
| 48 |
-
flattened_data.update(data.get('results', {}))
|
| 49 |
-
data_list.append(flattened_data)
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Error loading file {file}: {e}")
|
| 52 |
-
|
| 53 |
-
if not data_list:
|
| 54 |
-
print("No data loaded from JSON files")
|
| 55 |
-
return pd.DataFrame()
|
| 56 |
-
|
| 57 |
-
df = pd.DataFrame(data_list)
|
| 58 |
-
print(f"Successfully loaded DataFrame with shape: {df.shape}")
|
| 59 |
-
return df
|
| 60 |
|
| 61 |
-
|
| 62 |
try:
|
| 63 |
-
print(
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
except Exception as e:
|
| 82 |
-
print(f"Error in data loading: {e}")
|
| 83 |
-
# Create a minimal DataFrame
|
| 84 |
-
LEADERBOARD_DF = pd.DataFrame([{
|
| 85 |
-
"model_name": "Error Loading Data",
|
| 86 |
-
"average": 0
|
| 87 |
-
}])
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
print(f"Final DataFrame columns: {LEADERBOARD_DF.columns.tolist()}")
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
subject_cols = [
|
| 98 |
-
"abstract_algebra", "anatomy", "astronomy", "business_ethics",
|
| 99 |
-
"college_biology", "college_chemistry", "college_computer_science",
|
| 100 |
-
"high_school_mathematics", "machine_learning"
|
| 101 |
-
]
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
display_df = display_df.sort_values(by="average", ascending=False)
|
| 128 |
-
else:
|
| 129 |
-
display_df = LEADERBOARD_DF
|
| 130 |
|
| 131 |
-
# Create the app
|
| 132 |
-
with gr.Blocks(css=minimal_css) as demo:
|
| 133 |
-
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
|
| 134 |
-
|
| 135 |
-
with gr.Tabs() as tabs:
|
| 136 |
-
with gr.TabItem("LLM Benchmark"):
|
| 137 |
-
# Add debug output
|
| 138 |
-
with gr.Accordion("Debug Info", open=True):
|
| 139 |
-
gr.Markdown(f"DataFrame Shape: {display_df.shape}")
|
| 140 |
-
gr.Markdown(f"Column Names: {', '.join(display_df.columns[:10])}" + ("..." if len(display_df.columns) > 10 else ""))
|
| 141 |
-
|
| 142 |
-
# Use standard DataTable
|
| 143 |
-
datatable = gr.DataFrame(
|
| 144 |
-
value=display_df,
|
| 145 |
-
interactive=False,
|
| 146 |
-
wrap=True
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
# Add filter functionality using dropdowns
|
| 150 |
with gr.Row():
|
| 151 |
-
|
| 152 |
-
model_types = ["All"] + sorted(display_df["model_type"].dropna().unique().tolist())
|
| 153 |
-
model_type_filter = gr.Dropdown(
|
| 154 |
-
choices=model_types,
|
| 155 |
-
value="All",
|
| 156 |
-
label="Filter by Model Type",
|
| 157 |
-
interactive=True
|
| 158 |
-
)
|
| 159 |
|
| 160 |
-
if "precision" in display_df.columns and not display_df.empty:
|
| 161 |
-
precisions = ["All"] + sorted(display_df["precision"].dropna().unique().tolist())
|
| 162 |
-
precision_filter = gr.Dropdown(
|
| 163 |
-
choices=precisions,
|
| 164 |
-
value="All",
|
| 165 |
-
label="Filter by Precision",
|
| 166 |
-
interactive=True
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
search_input = gr.Textbox(
|
| 170 |
-
label="Search by Model Name",
|
| 171 |
-
placeholder="Enter model name...",
|
| 172 |
-
interactive=True
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
# Filter function
|
| 176 |
-
def filter_data(model_type, precision, search):
|
| 177 |
-
filtered_df = display_df.copy()
|
| 178 |
-
|
| 179 |
-
if model_type != "All" and "model_type" in filtered_df.columns:
|
| 180 |
-
filtered_df = filtered_df[filtered_df["model_type"] == model_type]
|
| 181 |
-
|
| 182 |
-
if precision != "All" and "precision" in filtered_df.columns:
|
| 183 |
-
filtered_df = filtered_df[filtered_df["precision"] == precision]
|
| 184 |
-
|
| 185 |
-
if search and "model_name" in filtered_df.columns:
|
| 186 |
-
filtered_df = filtered_df[filtered_df["model_name"].str.contains(search, case=False)]
|
| 187 |
-
|
| 188 |
-
return filtered_df
|
| 189 |
-
|
| 190 |
-
# Connect filters
|
| 191 |
-
filter_inputs = []
|
| 192 |
-
if "model_type" in display_df.columns and not display_df.empty:
|
| 193 |
-
filter_inputs.append(model_type_filter)
|
| 194 |
-
if "precision" in display_df.columns and not display_df.empty:
|
| 195 |
-
filter_inputs.append(precision_filter)
|
| 196 |
-
filter_inputs.append(search_input)
|
| 197 |
-
|
| 198 |
-
# If we have filter inputs, connect them
|
| 199 |
-
if filter_inputs:
|
| 200 |
-
for input_component in filter_inputs:
|
| 201 |
-
input_component.change(
|
| 202 |
-
filter_data,
|
| 203 |
-
inputs=filter_inputs,
|
| 204 |
-
outputs=datatable
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
with gr.TabItem("About"):
|
| 208 |
-
gr.Markdown("""
|
| 209 |
-
# About ILMAAM
|
| 210 |
-
|
| 211 |
-
The **Index for Language Models for Arabic Assessment on Multitasks (ILMAAM)** showcases the performance of various Arabic LLMs on the newly released MMMLU OpenAI Benchmark across different subjects.
|
| 212 |
-
|
| 213 |
-
This benchmark evaluates language models specifically for Arabic language capabilities.
|
| 214 |
-
""")
|
| 215 |
-
|
| 216 |
-
with gr.TabItem("Submit"):
|
| 217 |
-
gr.Markdown("""
|
| 218 |
-
# Submit Your Model
|
| 219 |
-
|
| 220 |
-
You can submit your Arabic language model for benchmark evaluation. Fill out the form below:
|
| 221 |
-
""")
|
| 222 |
-
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column():
|
| 225 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 226 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 227 |
model_type = gr.Dropdown(
|
| 228 |
-
choices=["
|
| 229 |
label="Model type",
|
| 230 |
multiselect=False,
|
| 231 |
-
|
|
|
|
| 232 |
)
|
| 233 |
|
| 234 |
with gr.Column():
|
| 235 |
precision = gr.Dropdown(
|
| 236 |
-
choices=[
|
| 237 |
label="Precision",
|
| 238 |
multiselect=False,
|
| 239 |
value="float16",
|
| 240 |
-
interactive=True
|
| 241 |
)
|
| 242 |
weight_type = gr.Dropdown(
|
| 243 |
-
choices=[
|
| 244 |
label="Weights type",
|
| 245 |
multiselect=False,
|
| 246 |
value="Original",
|
| 247 |
-
interactive=True
|
| 248 |
)
|
| 249 |
-
base_model_name_textbox = gr.Textbox(label="Base model (
|
| 250 |
|
| 251 |
-
submit_button = gr.Button("Submit
|
| 252 |
submission_result = gr.Markdown()
|
| 253 |
-
|
| 254 |
-
def mock_submission(model_name, base_model, revision, precision, weight_type, model_type):
|
| 255 |
-
if not model_name:
|
| 256 |
-
return "Error: Model name is required."
|
| 257 |
-
return f"Model '{model_name}' submitted successfully! It will be evaluated soon."
|
| 258 |
-
|
| 259 |
submit_button.click(
|
| 260 |
-
|
| 261 |
[
|
| 262 |
model_name_textbox,
|
| 263 |
base_model_name_textbox,
|
|
@@ -269,4 +154,17 @@ with gr.Blocks(css=minimal_css) as demo:
|
|
| 269 |
submission_result,
|
| 270 |
)
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
from src.about import (
|
| 8 |
+
CITATION_BUTTON_LABEL,
|
| 9 |
+
CITATION_BUTTON_TEXT,
|
| 10 |
+
EVALUATION_QUEUE_TEXT,
|
| 11 |
+
INTRODUCTION_TEXT,
|
| 12 |
+
LLM_BENCHMARKS_TEXT,
|
| 13 |
+
TITLE,
|
| 14 |
+
)
|
| 15 |
+
from src.display.css_html_js import custom_css
|
| 16 |
+
from src.display.utils import (
|
| 17 |
+
COLUMNS,
|
| 18 |
+
COLS,
|
| 19 |
+
BENCHMARK_COLS,
|
| 20 |
+
EVAL_COLS,
|
| 21 |
+
EVAL_TYPES,
|
| 22 |
+
ModelType,
|
| 23 |
+
WeightType,
|
| 24 |
+
Precision
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
+
from src.submission.submit import add_new_eval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def restart_space():
|
| 32 |
+
API.restart_space(repo_id=REPO_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
### Space initialization
|
| 35 |
try:
|
| 36 |
+
print(EVAL_REQUESTS_PATH)
|
| 37 |
+
snapshot_download(
|
| 38 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 39 |
+
)
|
| 40 |
+
except Exception:
|
| 41 |
+
restart_space()
|
| 42 |
+
try:
|
| 43 |
+
print(EVAL_RESULTS_PATH)
|
| 44 |
+
snapshot_download(
|
| 45 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 46 |
+
)
|
| 47 |
+
except Exception:
|
| 48 |
+
restart_space()
|
| 49 |
+
|
| 50 |
+
# Load the leaderboard DataFrame
|
| 51 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 52 |
+
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug
|
| 53 |
+
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Load the evaluation queue DataFrames
|
| 56 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
|
| 57 |
|
| 58 |
+
demo = gr.Blocks(css=custom_css)
|
| 59 |
+
with demo:
|
| 60 |
+
gr.HTML(TITLE)
|
| 61 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 64 |
+
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 65 |
+
if LEADERBOARD_DF.empty:
|
| 66 |
+
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
|
| 67 |
+
else:
|
| 68 |
+
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
|
| 69 |
+
print("Default Selection before ensuring 'model_name':", default_selection) # Debug
|
| 70 |
|
| 71 |
+
# Ensure "model_name" is included
|
| 72 |
+
if "model_name" not in default_selection:
|
| 73 |
+
default_selection.insert(0, "model_name")
|
| 74 |
+
print("Default Selection after ensuring 'model_name':", default_selection) # Debug
|
| 75 |
|
| 76 |
+
leaderboard = Leaderboard(
|
| 77 |
+
value=LEADERBOARD_DF,
|
| 78 |
+
datatype=[col.type for col in COLUMNS],
|
| 79 |
+
select_columns=SelectColumns(
|
| 80 |
+
default_selection=default_selection,
|
| 81 |
+
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
|
| 82 |
+
label="Select Columns to Display:",
|
| 83 |
+
),
|
| 84 |
+
search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]], # Updated to 'model_name'
|
| 85 |
+
hide_columns=[col.name for col in COLUMNS if col.hidden],
|
| 86 |
+
filter_columns=[
|
| 87 |
+
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
|
| 88 |
+
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
|
| 89 |
+
ColumnFilter(
|
| 90 |
+
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
|
| 91 |
+
),
|
| 92 |
+
],
|
| 93 |
+
bool_checkboxgroup_label="Hide models",
|
| 94 |
+
interactive=False,
|
| 95 |
+
)
|
| 96 |
+
# No need to call leaderboard.render() since it's created within the Gradio context
|
| 97 |
|
| 98 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 99 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 100 |
+
|
| 101 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 102 |
+
with gr.Column():
|
| 103 |
+
with gr.Row():
|
| 104 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 105 |
+
|
| 106 |
+
# Since the evaluation queues are empty, display a message
|
| 107 |
+
with gr.Column():
|
| 108 |
+
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
with gr.Row():
|
| 111 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
with gr.Row():
|
| 114 |
with gr.Column():
|
| 115 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 116 |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 117 |
model_type = gr.Dropdown(
|
| 118 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 119 |
label="Model type",
|
| 120 |
multiselect=False,
|
| 121 |
+
value=None,
|
| 122 |
+
interactive=True,
|
| 123 |
)
|
| 124 |
|
| 125 |
with gr.Column():
|
| 126 |
precision = gr.Dropdown(
|
| 127 |
+
choices=[i.value for i in Precision if i != Precision.Unknown],
|
| 128 |
label="Precision",
|
| 129 |
multiselect=False,
|
| 130 |
value="float16",
|
| 131 |
+
interactive=True,
|
| 132 |
)
|
| 133 |
weight_type = gr.Dropdown(
|
| 134 |
+
choices=[i.value for i in WeightType],
|
| 135 |
label="Weights type",
|
| 136 |
multiselect=False,
|
| 137 |
value="Original",
|
| 138 |
+
interactive=True,
|
| 139 |
)
|
| 140 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 141 |
|
| 142 |
+
submit_button = gr.Button("Submit Eval")
|
| 143 |
submission_result = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
submit_button.click(
|
| 145 |
+
add_new_eval,
|
| 146 |
[
|
| 147 |
model_name_textbox,
|
| 148 |
base_model_name_textbox,
|
|
|
|
| 154 |
submission_result,
|
| 155 |
)
|
| 156 |
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 159 |
+
citation_button = gr.Textbox(
|
| 160 |
+
value=CITATION_BUTTON_TEXT,
|
| 161 |
+
label=CITATION_BUTTON_LABEL,
|
| 162 |
+
lines=20,
|
| 163 |
+
elem_id="citation-button",
|
| 164 |
+
show_copy_button=True,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
scheduler = BackgroundScheduler()
|
| 168 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 169 |
+
scheduler.start()
|
| 170 |
+
demo.queue(default_concurrency_limit=40).launch()
|