File size: 10,131 Bytes
aa37927 df4e9ef aa37927 df4e9ef 8767411 df4e9ef aa37927 df4e9ef 8767411 7beb781 df4e9ef 8355c4d df4e9ef aa37927 df4e9ef aa37927 df4e9ef 8355c4d 7beb781 df4e9ef 8355c4d df4e9ef e1da145 df4e9ef e1da145 7beb781 df4e9ef 7beb781 df4e9ef 7beb781 df4e9ef 7beb781 e1da145 df4e9ef 8355c4d e1da145 df4e9ef e1da145 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d df4e9ef 8355c4d 64f6484 df4e9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLUMNS,
COLS,
BENCHMARK_COLS,
EVAL_COLS,
EVAL_TYPES,
ModelType,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Add this CSS to make column selection more compact
custom_css_additions = """
.select-columns-container {
max-height: 300px;
overflow-y: auto;
display: grid;
grid-template-columns: repeat(4, 1fr);
gap: 5px;
}
.select-columns-container label {
font-size: 0.9em;
padding: 2px;
margin: 0;
}
.column-categories {
margin-bottom: 10px;
}
"""
# Update your CSS
if 'custom_css' in locals():
custom_css += custom_css_additions
else:
custom_css = custom_css_additions
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialization
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# Load the leaderboard DataFrame
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape) # Debug
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist()) # Debug
# Load the evaluation queue DataFrames
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Group columns by category for better organization
COLUMN_CATEGORIES = {
"Model Info": ["model_name", "model_type", "license", "likes", "base_model", "params", "precision", "weight_type", "still_on_hub", "average"],
"Academic Knowledge": ["abstract_algebra", "anatomy", "astronomy", "college_biology", "college_chemistry", "college_computer_science",
"college_mathematics", "college_medicine", "college_physics"],
"General Knowledge": ["business_ethics", "clinical_knowledge", "conceptual_physics", "econometrics", "electrical_engineering",
"elementary_mathematics", "formal_logic", "global_facts"],
"High School Subjects": ["high_school_biology", "high_school_chemistry", "high_school_computer_science",
"high_school_european_history", "high_school_geography", "high_school_government_and_politics"]
}
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
if LEADERBOARD_DF.empty:
gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
else:
default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
print("Default Selection before ensuring 'model_name':", default_selection) # Debug
# Ensure "model_name" is included
if "model_name" not in default_selection:
default_selection.insert(0, "model_name")
print("Default Selection after ensuring 'model_name':", default_selection) # Debug
# Create an accordion for column selection
with gr.Accordion("Select Columns to Display", open=False):
column_selections = {}
for category, cols in COLUMN_CATEGORIES.items():
# Filter to only include columns that exist
available_cols = [c for c in cols if c in [col.name for col in COLUMNS]]
if available_cols:
with gr.Column(elem_classes="column-categories"):
gr.Markdown(f"**{category}**")
column_selections[category] = gr.CheckboxGroup(
choices=available_cols,
value=[c for c in available_cols if c in default_selection],
label=""
)
# Create the leaderboard with standard SelectColumns (it will be hidden via CSS)
leaderboard = Leaderboard(
value=LEADERBOARD_DF,
datatype=[col.type for col in COLUMNS],
select_columns=SelectColumns(
default_selection=default_selection,
cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
label="Select Columns to Display:",
render=False, # Don't render the built-in selector if this option is available
),
search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]],
hide_columns=[col.name for col in COLUMNS if col.hidden],
filter_columns=[
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
ColumnFilter(
"still_on_hub", type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# Add event handlers to update visible columns when custom checkboxes are changed
for category, checkbox_group in column_selections.items():
# For each category, when checkboxes change, update the visible columns
# This might need adjustment based on how the Leaderboard component works
checkbox_group.change(
fn=lambda *values: leaderboard.update(visible_columns=sum(values, [])),
inputs=list(column_selections.values()),
outputs=[leaderboard]
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# Since the evaluation queues are empty, display a message
with gr.Column():
gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |