File size: 10,131 Bytes
aa37927
df4e9ef
aa37927
df4e9ef
 
8767411
df4e9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
df4e9ef
 
 
8767411
7beb781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df4e9ef
 
8355c4d
df4e9ef
aa37927
df4e9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa37927
df4e9ef
 
8355c4d
7beb781
 
 
 
 
 
 
 
 
 
 
df4e9ef
 
 
 
8355c4d
df4e9ef
 
 
 
 
 
 
e1da145
df4e9ef
 
 
 
e1da145
7beb781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df4e9ef
 
 
 
 
 
 
7beb781
df4e9ef
7beb781
df4e9ef
 
 
 
 
 
 
 
 
 
 
7beb781
 
 
 
 
 
 
 
 
 
e1da145
df4e9ef
 
 
 
 
 
 
 
 
 
 
8355c4d
e1da145
df4e9ef
e1da145
8355c4d
 
 
 
 
df4e9ef
8355c4d
 
df4e9ef
 
8355c4d
 
 
 
df4e9ef
8355c4d
 
 
df4e9ef
8355c4d
 
df4e9ef
8355c4d
 
 
df4e9ef
8355c4d
df4e9ef
8355c4d
df4e9ef
8355c4d
 
df4e9ef
8355c4d
 
 
 
 
 
 
 
 
 
64f6484
df4e9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    COLUMNS,
    COLS,
    BENCHMARK_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    ModelType,
    WeightType,
    Precision
)

from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

# Add this CSS to make column selection more compact
custom_css_additions = """
.select-columns-container {
    max-height: 300px;
    overflow-y: auto;
    display: grid;
    grid-template-columns: repeat(4, 1fr);
    gap: 5px;
}

.select-columns-container label {
    font-size: 0.9em;
    padding: 2px;
    margin: 0;
}

.column-categories {
    margin-bottom: 10px;
}
"""

# Update your CSS
if 'custom_css' in locals():
    custom_css += custom_css_additions
else:
    custom_css = custom_css_additions

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialization
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# Load the leaderboard DataFrame
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print("LEADERBOARD_DF Shape:", LEADERBOARD_DF.shape)  # Debug
print("LEADERBOARD_DF Columns:", LEADERBOARD_DF.columns.tolist())  # Debug

# Load the evaluation queue DataFrames
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# Group columns by category for better organization
COLUMN_CATEGORIES = {
    "Model Info": ["model_name", "model_type", "license", "likes", "base_model", "params", "precision", "weight_type", "still_on_hub", "average"],
    "Academic Knowledge": ["abstract_algebra", "anatomy", "astronomy", "college_biology", "college_chemistry", "college_computer_science", 
                          "college_mathematics", "college_medicine", "college_physics"],
    "General Knowledge": ["business_ethics", "clinical_knowledge", "conceptual_physics", "econometrics", "electrical_engineering",
                          "elementary_mathematics", "formal_logic", "global_facts"],
    "High School Subjects": ["high_school_biology", "high_school_chemistry", "high_school_computer_science", 
                             "high_school_european_history", "high_school_geography", "high_school_government_and_politics"]
}

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            if LEADERBOARD_DF.empty:
                gr.Markdown("No evaluations have been performed yet. The leaderboard is currently empty.")
            else:
                default_selection = [col.name for col in COLUMNS if col.displayed_by_default]
                print("Default Selection before ensuring 'model_name':", default_selection)  # Debug

                # Ensure "model_name" is included
                if "model_name" not in default_selection:
                    default_selection.insert(0, "model_name")
                    print("Default Selection after ensuring 'model_name':", default_selection)  # Debug

                # Create an accordion for column selection
                with gr.Accordion("Select Columns to Display", open=False):
                    column_selections = {}
                    
                    for category, cols in COLUMN_CATEGORIES.items():
                        # Filter to only include columns that exist
                        available_cols = [c for c in cols if c in [col.name for col in COLUMNS]]
                        
                        if available_cols:
                            with gr.Column(elem_classes="column-categories"):
                                gr.Markdown(f"**{category}**")
                                column_selections[category] = gr.CheckboxGroup(
                                    choices=available_cols,
                                    value=[c for c in available_cols if c in default_selection],
                                    label=""
                                )
                
                # Create the leaderboard with standard SelectColumns (it will be hidden via CSS)
                leaderboard = Leaderboard(
                    value=LEADERBOARD_DF,
                    datatype=[col.type for col in COLUMNS],
                    select_columns=SelectColumns(
                        default_selection=default_selection,
                        cant_deselect=[col.name for col in COLUMNS if col.never_hidden],
                        label="Select Columns to Display:",
                        render=False,  # Don't render the built-in selector if this option is available
                    ),
                    search_columns=[col.name for col in COLUMNS if col.name in ["model_name", "license"]],
                    hide_columns=[col.name for col in COLUMNS if col.hidden],
                    filter_columns=[
                        ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
                        ColumnFilter("precision", type="checkboxgroup", label="Precision"),
                        ColumnFilter(
                            "still_on_hub", type="boolean", label="Deleted/incomplete", default=True
                        ),
                    ],
                    bool_checkboxgroup_label="Hide models",
                    interactive=False,
                )
                
                # Add event handlers to update visible columns when custom checkboxes are changed
                for category, checkbox_group in column_selections.items():
                    # For each category, when checkboxes change, update the visible columns
                    # This might need adjustment based on how the Leaderboard component works
                    checkbox_group.change(
                        fn=lambda *values: leaderboard.update(visible_columns=sum(values, [])),
                        inputs=list(column_selections.values()),
                        outputs=[leaderboard]
                    )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                # Since the evaluation queues are empty, display a message
                with gr.Column():
                    gr.Markdown("Evaluations are performed immediately upon submission. There are no pending or running evaluations.")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()