Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,473 Bytes
7c89d3a d7ca9c8 eeb4ef5 d7ca9c8 b22f2c5 7c89d3a b22f2c5 7c89d3a b22f2c5 a495ef9 7c89d3a b22f2c5 7c89d3a b22f2c5 eeb4ef5 7c89d3a b22f2c5 d7ca9c8 7c89d3a d7ca9c8 7c89d3a b22f2c5 7c89d3a b22f2c5 7c89d3a b22f2c5 7c89d3a 83686fb 7c89d3a b22f2c5 83686fb b22f2c5 83686fb b22f2c5 83686fb b22f2c5 7c89d3a bfecb5b b22f2c5 83686fb 7c89d3a b22f2c5 83686fb b22f2c5 83686fb b22f2c5 7c89d3a d7ca9c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
from test_ccsr_tile import load_pipeline
import argparse
from accelerate import Accelerator
# Initialize global variables
pipeline = None
generator = None
accelerator = None
class Args:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
@spaces.GPU
def initialize_models():
global pipeline, generator, accelerator
try:
# Download model repository
model_path = snapshot_download(
repo_id="NightRaven109/CCSRModels",
token=os.environ['Read2']
)
# Set up default arguments
args = Args(
pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
controlnet_model_path=os.path.join(model_path, "Controlnet"),
vae_model_path=os.path.join(model_path, "vae"),
mixed_precision="fp16",
tile_vae=False,
sample_method="ddpm",
vae_encoder_tile_size=1024,
vae_decoder_tile_size=224
)
# Initialize accelerator
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# Load pipeline
pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
# Set pipeline to eval mode
pipeline.unet.eval()
pipeline.controlnet.eval()
pipeline.vae.eval()
pipeline.text_encoder.eval()
# Initialize generator
generator = torch.Generator(device=accelerator.device)
return True
except Exception as e:
print(f"Error initializing models: {str(e)}")
return False
@spaces.GPU(processing_timeout=180) # Increased timeout for longer processing
def process_image(
input_image,
prompt="clean, high-resolution, 8k",
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
guidance_scale=1.0,
conditioning_scale=1.0,
num_inference_steps=20,
seed=42,
upscale_factor=2,
color_fix_method="adain"
):
global pipeline, generator, accelerator
if pipeline is None:
if not initialize_models():
return None
try:
# Create args object with all necessary parameters
args = Args(
added_prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
conditioning_scale=conditioning_scale,
num_inference_steps=num_inference_steps,
seed=seed,
upscale=upscale_factor,
process_size=512,
align_method=color_fix_method,
t_max=0.6666,
t_min=0.0,
tile_diffusion=False,
tile_diffusion_size=None,
tile_diffusion_stride=None,
start_steps=999,
start_point='lr',
use_vae_encode_condition=False,
sample_times=1
)
# Set seed if provided
if seed is not None:
generator.manual_seed(seed)
# Process input image
validation_image = Image.fromarray(input_image)
ori_width, ori_height = validation_image.size
# Resize logic
resize_flag = False
if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
# Generate image
with torch.no_grad():
inference_time, output = pipeline(
args.t_max,
args.t_min,
args.tile_diffusion,
args.tile_diffusion_size,
args.tile_diffusion_stride,
args.added_prompt,
validation_image,
num_inference_steps=args.num_inference_steps,
generator=generator,
height=height,
width=width,
guidance_scale=args.guidance_scale,
negative_prompt=args.negative_prompt,
conditioning_scale=args.conditioning_scale,
start_steps=args.start_steps,
start_point=args.start_point,
use_vae_encode_condition=args.use_vae_encode_condition,
)
image = output.images[0]
# Apply color fixing if specified
if args.align_method != "none":
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
image = fix_func(image, validation_image)
if resize_flag:
image = image.resize((ori_width*args.upscale, ori_height*args.upscale))
return image
except Exception as e:
print(f"Error processing image: {str(e)}")
return None
# Create Gradio interface
demo = gr.Interface(
fn=process_image,
inputs=[
gr.Image(label="Input Image"),
gr.Textbox(label="Prompt", value="clean, high-resolution, 8k"),
gr.Textbox(label="Negative Prompt", value="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed"),
gr.Slider(minimum=1.0, maximum=20.0, value=1.0, label="Guidance Scale"),
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Conditioning Scale"),
gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Steps"),
gr.Number(label="Seed", value=42),
gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Upscale Factor"),
gr.Radio(["none", "wavelet", "adain"], label="Color Fix Method", value="adain"),
],
outputs=gr.Image(label="Generated Image"),
title="Controllable Conditional Super-Resolution",
description="Upload an image to enhance its resolution using CCSR."
)
if __name__ == "__main__":
demo.launch()
|