File size: 6,473 Bytes
7c89d3a
 
 
 
 
d7ca9c8
eeb4ef5
d7ca9c8
b22f2c5
7c89d3a
b22f2c5
 
7c89d3a
 
 
b22f2c5
 
 
 
a495ef9
7c89d3a
 
b22f2c5
7c89d3a
 
b22f2c5
eeb4ef5
 
 
 
7c89d3a
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7ca9c8
 
 
 
 
 
7c89d3a
 
 
 
 
 
 
 
 
d7ca9c8
7c89d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22f2c5
7c89d3a
b22f2c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c89d3a
 
b22f2c5
7c89d3a
83686fb
 
7c89d3a
b22f2c5
83686fb
b22f2c5
 
 
83686fb
 
b22f2c5
83686fb
 
b22f2c5
7c89d3a
bfecb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22f2c5
83686fb
 
7c89d3a
b22f2c5
 
 
83686fb
 
 
b22f2c5
 
83686fb
b22f2c5
7c89d3a
 
 
 
d7ca9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
from test_ccsr_tile import load_pipeline
import argparse
from accelerate import Accelerator

# Initialize global variables
pipeline = None
generator = None
accelerator = None

class Args:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)

@spaces.GPU
def initialize_models():
    global pipeline, generator, accelerator
    
    try:
        # Download model repository
        model_path = snapshot_download(
            repo_id="NightRaven109/CCSRModels",
            token=os.environ['Read2']
        )

        # Set up default arguments
        args = Args(
            pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
            controlnet_model_path=os.path.join(model_path, "Controlnet"),
            vae_model_path=os.path.join(model_path, "vae"),
            mixed_precision="fp16",
            tile_vae=False,
            sample_method="ddpm",
            vae_encoder_tile_size=1024,
            vae_decoder_tile_size=224
        )

        # Initialize accelerator
        accelerator = Accelerator(
            mixed_precision=args.mixed_precision,
        )

        # Load pipeline
        pipeline = load_pipeline(args, accelerator, enable_xformers_memory_efficient_attention=False)
        
        # Set pipeline to eval mode
        pipeline.unet.eval()
        pipeline.controlnet.eval()
        pipeline.vae.eval()
        pipeline.text_encoder.eval()
        
        # Initialize generator
        generator = torch.Generator(device=accelerator.device)
        
        return True

    except Exception as e:
        print(f"Error initializing models: {str(e)}")
        return False

@spaces.GPU(processing_timeout=180) # Increased timeout for longer processing
def process_image(
    input_image,
    prompt="clean, high-resolution, 8k",
    negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
    guidance_scale=1.0,
    conditioning_scale=1.0,
    num_inference_steps=20,
    seed=42,
    upscale_factor=2,
    color_fix_method="adain"
):
    global pipeline, generator, accelerator
    
    if pipeline is None:
        if not initialize_models():
            return None

    try:
        # Create args object with all necessary parameters
        args = Args(
            added_prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            conditioning_scale=conditioning_scale,
            num_inference_steps=num_inference_steps,
            seed=seed,
            upscale=upscale_factor,
            process_size=512,
            align_method=color_fix_method,
            t_max=0.6666,
            t_min=0.0,
            tile_diffusion=False,
            tile_diffusion_size=None,
            tile_diffusion_stride=None,
            start_steps=999,
            start_point='lr',
            use_vae_encode_condition=False,
            sample_times=1
        )

        # Set seed if provided
        if seed is not None:
            generator.manual_seed(seed)

        # Process input image
        validation_image = Image.fromarray(input_image)
        ori_width, ori_height = validation_image.size
        
        # Resize logic
        resize_flag = False
        if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
            scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
            validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
            resize_flag = True

        validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
        validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
        width, height = validation_image.size

        # Generate image
        with torch.no_grad():
            inference_time, output = pipeline(
                args.t_max,
                args.t_min,
                args.tile_diffusion,
                args.tile_diffusion_size,
                args.tile_diffusion_stride,
                args.added_prompt,
                validation_image,
                num_inference_steps=args.num_inference_steps,
                generator=generator,
                height=height,
                width=width,
                guidance_scale=args.guidance_scale,
                negative_prompt=args.negative_prompt,
                conditioning_scale=args.conditioning_scale,
                start_steps=args.start_steps,
                start_point=args.start_point,
                use_vae_encode_condition=args.use_vae_encode_condition,
            )

        image = output.images[0]

        # Apply color fixing if specified
        if args.align_method != "none":
            from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
            fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
            image = fix_func(image, validation_image)
            
        if resize_flag:
            image = image.resize((ori_width*args.upscale, ori_height*args.upscale))

        return image

    except Exception as e:
        print(f"Error processing image: {str(e)}")
        return None

# Create Gradio interface
demo = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(label="Input Image"),
        gr.Textbox(label="Prompt", value="clean, high-resolution, 8k"),
        gr.Textbox(label="Negative Prompt", value="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed"),
        gr.Slider(minimum=1.0, maximum=20.0, value=1.0, label="Guidance Scale"),
        gr.Slider(minimum=0.1, maximum=2.0, value=1.0, label="Conditioning Scale"),
        gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Steps"),
        gr.Number(label="Seed", value=42),
        gr.Slider(minimum=1, maximum=4, value=2, step=1, label="Upscale Factor"),
        gr.Radio(["none", "wavelet", "adain"], label="Color Fix Method", value="adain"),
    ],
    outputs=gr.Image(label="Generated Image"),
    title="Controllable Conditional Super-Resolution",
    description="Upload an image to enhance its resolution using CCSR."
)

if __name__ == "__main__":
    demo.launch()