File size: 20,226 Bytes
0900c59
0e7c9e6
0900c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7c9e6
0900c59
3190260
0900c59
 
0e7c9e6
0900c59
0e7c9e6
0900c59
 
0e7c9e6
0900c59
eb56303
 
 
0e7c9e6
294f972
 
30418ed
eb56303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0900c59
 
 
 
9c246a3
 
 
 
 
0900c59
 
7062b75
 
 
0900c59
 
 
 
 
 
 
 
7062b75
0900c59
9c246a3
 
 
 
 
0900c59
 
7062b75
0900c59
 
7062b75
0900c59
9c246a3
 
 
 
 
0900c59
 
7062b75
0900c59
 
 
7062b75
0900c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec79957
0900c59
 
 
 
ec79957
 
 
0900c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7062b75
 
30418ed
0900c59
 
7062b75
 
30418ed
 
0900c59
 
7062b75
 
0900c59
7062b75
9c246a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7062b75
 
 
 
 
 
 
 
0900c59
 
 
 
9c246a3
7062b75
 
0900c59
 
 
 
 
 
7062b75
 
 
 
 
 
 
0900c59
9c246a3
7062b75
 
 
 
 
 
 
 
 
 
0900c59
 
 
 
 
 
9c246a3
7062b75
 
 
 
 
 
 
 
 
 
0900c59
 
 
 
 
 
9c246a3
7062b75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c246a3
 
0900c59
 
 
 
9c246a3
0900c59
 
9c246a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0900c59
 
 
 
 
 
 
 
 
ec79957
7062b75
0900c59
 
 
 
 
 
 
 
 
 
 
9c246a3
 
 
 
 
0900c59
 
7062b75
 
9c246a3
0900c59
7062b75
0900c59
 
 
 
 
 
 
 
 
 
 
 
30418ed
0900c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec79957
 
0900c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec79957
0900c59
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import torch
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
import gradio as gr
import os
import random
import numpy as np
import spaces

HF_TOKEN = os.getenv("HF_TOKEN")

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")


MAX_SEED = np.iinfo(np.int32).max

# Initialize the pipelines for each sd model
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
    "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
)
sd3_medium_pipe.enable_model_cpu_offload()

sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
sd2_1_pipe.enable_model_cpu_offload()

sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
sdxl_pipe.enable_model_cpu_offload()

sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
    "sd-community/sdxl-flash", torch_dtype=torch.float16
)
sdxl_flash_pipe.enable_model_cpu_offload()
# Ensure sampler uses "trailing" timesteps for sdxl flash.
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")

# Helper function to generate images for a single model
@spaces.GPU(duration=80)
def generate_single_image(
    prompt,
    negative_prompt,
    num_inference_steps,
    height,
    width,
    guidance_scale,
    seed,
    num_images_per_prompt,
    model_choice,
    generator,
):
    # Select the correct pipeline based on the model choice
    if model_choice == "sd3 medium":
        pipe = sd3_medium_pipe
    elif model_choice == "sd2.1":
        pipe = sd2_1_pipe
    elif model_choice == "sdxl":
        pipe = sdxl_pipe
    elif model_choice == "sdxl flash":
        pipe = sdxl_flash_pipe
    else:
        raise ValueError(f"Invalid model choice: {model_choice}")

    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        generator=generator,
        num_images_per_prompt=num_images_per_prompt,
    ).images

    return output

# Define the image generation function for the Arena tab
@spaces.GPU(duration=80)
def generate_arena_images(
    prompt,
    negative_prompt,
    num_inference_steps,
    height,
    width,
    guidance_scale,
    seed,
    num_images_per_prompt,
    model_choice_A,
    model_choice_B,
    use_same_settings,
    progress=gr.Progress(track_tqdm=True),
):
    if seed == 0:
        seed = random.randint(1, 2**32 - 1)

    generator = torch.Generator().manual_seed(seed)

    # Generate images for both models
    images_A = generate_single_image(
        prompt,
        negative_prompt,
        num_inference_steps,
        height,
        width,
        guidance_scale,
        seed,
        num_images_per_prompt,
        model_choice_A,
        generator,
    )
    images_B = generate_single_image(
        prompt,
        negative_prompt,
        num_inference_steps,
        height,
        width,
        guidance_scale,
        seed,
        num_images_per_prompt,
        model_choice_B,
        generator,
    )

    return images_A, images_B

# Define the image generation function for the Individual tab
@spaces.GPU(duration=80)
def generate_individual_image(
    prompt,
    negative_prompt,
    num_inference_steps,
    height,
    width,
    guidance_scale,
    seed,
    num_images_per_prompt,
    model_choice,
    progress=gr.Progress(track_tqdm=True),
):
    if seed == 0:
        seed = random.randint(1, 2**32 - 1)

    generator = torch.Generator().manual_seed(seed)

    output = generate_single_image(
        prompt,
        negative_prompt,
        num_inference_steps,
        height,
        width,
        guidance_scale,
        seed,
        num_images_per_prompt,
        model_choice,
        generator,
    )

    return output


# Create the Gradio interface
examples = [
    ["A white car racing fast to the moon."],
    ["A woman in a red dress singing on top of a building."],
    ["An astronaut on mars in a futuristic cyborg suit."],
]

css = """
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
"""
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML(
                """
            <h1 style='text-align: center'>
            Stable Diffusion Arena
            </h1>
            """
            )
            gr.HTML(
                """
               Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a>
               <br> <a href="https://discord.gg/osai"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>
                """
            )
    with gr.Tabs():
        with gr.TabItem("Arena"):
            with gr.Group():
                with gr.Column():
                    prompt = gr.Textbox(
                        label="Prompt",
                        info="Describe the image you want",
                        placeholder="A cat...",
                    )
                    model_choice_A = gr.Dropdown(
                        label="Stable Diffusion Model A",
                        choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
                        value="sd3 medium",
                    )
                    model_choice_B = gr.Dropdown(
                        label="Stable Diffusion Model B",
                        choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
                        value="sdxl",
                    )
                    run_button = gr.Button("Run")
                result_A = gr.Gallery(label="Generated Images (Model A)", elem_id="gallery_A")
                result_B = gr.Gallery(label="Generated Images (Model B)", elem_id="gallery_B")
            with gr.Accordion("Advanced options", open=False):
                use_same_settings = gr.Checkbox(label='Use same settings for both models', value=True)

                # Conditional UI elements based on use_same_settings
                with gr.Row(visible=True):
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt",
                        info="Describe what you don't want in the image",
                        value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        placeholder="Ugly, bad anatomy...",
                    )
                with gr.Row(visible=True):
                    num_inference_steps = gr.Slider(
                        label="Number of Inference Steps",
                        info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
                        minimum=1,
                        maximum=50,
                        value=25,
                        step=1,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
                        minimum=0.0,
                        maximum=10.0,
                        value=7.5,
                        step=0.1,
                    )
                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        info="Width of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        info="Height of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                with gr.Row(visible=True):
                    seed = gr.Slider(
                        value=42,
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        label="Seed",
                        info="A starting point to initiate the generation process, put 0 for a random one",
                    )
                    num_images_per_prompt = gr.Slider(
                        label="Images Per Prompt",
                        info="Number of Images to generate with the settings",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )

                # Conditional UI elements based on use_same_settings
                with gr.Row(visible=False):
                    negative_prompt_A = gr.Textbox(
                        label="Negative Prompt (Model A)",
                        info="Describe what you don't want in the image",
                        value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        placeholder="Ugly, bad anatomy...",
                    )
                    negative_prompt_B = gr.Textbox(
                        label="Negative Prompt (Model B)",
                        info="Describe what you don't want in the image",
                        value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        placeholder="Ugly, bad anatomy...",
                    )
                with gr.Row(visible=False):
                    num_inference_steps_A = gr.Slider(
                        label="Number of Inference Steps (Model A)",
                        info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
                        minimum=1,
                        maximum=50,
                        value=25,
                        step=1,
                    )
                    num_inference_steps_B = gr.Slider(
                        label="Number of Inference Steps (Model B)",
                        info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
                        minimum=1,
                        maximum=50,
                        value=25,
                        step=1,
                    )
                with gr.Row(visible=False):
                    width_A = gr.Slider(
                        label="Width (Model A)",
                        info="Width of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                    width_B = gr.Slider(
                        label="Width (Model B)",
                        info="Width of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                with gr.Row(visible=False):
                    height_A = gr.Slider(
                        label="Height (Model A)",
                        info="Height of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                    height_B = gr.Slider(
                        label="Height (Model B)",
                        info="Height of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                with gr.Row(visible=False):
                    guidance_scale_A = gr.Slider(
                        label="Guidance Scale (Model A)",
                        info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
                        minimum=0.0,
                        maximum=10.0,
                        value=7.5,
                        step=0.1,
                    )
                    guidance_scale_B = gr.Slider(
                        label="Guidance Scale (Model B)",
                        info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
                        minimum=0.0,
                        maximum=10.0,
                        value=7.5,
                        step=0.1,
                    )
                with gr.Row(visible=False):
                    seed_A = gr.Slider(
                        value=42,
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        label="Seed (Model A)",
                        info="A starting point to initiate the generation process, put 0 for a random one",
                    )
                    seed_B = gr.Slider(
                        value=42,
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        label="Seed (Model B)",
                        info="A starting point to initiate the generation process, put 0 for a random one",
                    )
                with gr.Row(visible=False):
                    num_images_per_prompt_A = gr.Slider(
                        label="Images Per Prompt (Model A)",
                        info="Number of Images to generate with the settings",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )
                    num_images_per_prompt_B = gr.Slider(
                        label="Images Per Prompt (Model B)",
                        info="Number of Images to generate with the settings",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )

            gr.Examples(
                examples=examples,
                inputs=[prompt],
                outputs=[result_A, result_B],
                fn=generate_arena_images,
            )

            gr.on(
                triggers=[
                    prompt.submit,
                    run_button.click,
                ],
                fn=generate_arena_images,
                inputs=[
                    prompt,
                    negative_prompt,
                    num_inference_steps,
                    height,
                    width,
                    guidance_scale,
                    seed,
                    num_images_per_prompt,
                    model_choice_A,
                    model_choice_B,
                    use_same_settings,
                ],
                outputs=[result_A, result_B],
            )

        with gr.TabItem("Individual"):
            with gr.Group():
                with gr.Column():
                    prompt = gr.Textbox(
                        label="Prompt",
                        info="Describe the image you want",
                        placeholder="A cat...",
                    )
                    model_choice = gr.Dropdown(
                        label="Stable Diffusion Model",
                        choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
                        value="sd3 medium",
                    )
                    run_button = gr.Button("Run")
                result = gr.Gallery(label="Generated AI Images", elem_id="gallery")
            with gr.Accordion("Advanced options", open=False):
                with gr.Row():
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt",
                        info="Describe what you don't want in the image",
                        value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                        placeholder="Ugly, bad anatomy...",
                    )
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        label="Number of Inference Steps",
                        info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
                        minimum=1,
                        maximum=50,
                        value=25,
                        step=1,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
                        minimum=0.0,
                        maximum=10.0,
                        value=7.5,
                        step=0.1,
                    )
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        info="Width of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        info="Height of the Image",
                        minimum=256,
                        maximum=1344,
                        step=32,
                        value=1024,
                    )
                with gr.Row():
                    seed = gr.Slider(
                        value=42,
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        label="Seed",
                        info="A starting point to initiate the generation process, put 0 for a random one",
                    )
                    num_images_per_prompt = gr.Slider(
                        label="Images Per Prompt",
                        info="Number of Images to generate with the settings",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )

            gr.Examples(
                examples=examples,
                inputs=[prompt],
                outputs=[result],
                fn=generate_individual_image,
            )

            gr.on(
                triggers=[
                    prompt.submit,
                    run_button.click,
                ],
                fn=generate_individual_image,
                inputs=[
                    prompt,
                    negative_prompt,
                    num_inference_steps,
                    width,
                    height,
                    guidance_scale,
                    seed,
                    num_images_per_prompt,
                    model_choice,
                ],
                outputs=[result],
            )

demo.queue().launch(share=False)