Spaces:
Sleeping
Sleeping
choose in arena if to use same settings for both models
Browse files
app.py
CHANGED
@@ -84,15 +84,21 @@ def generate_single_image(
|
|
84 |
@spaces.GPU(duration=80)
|
85 |
def generate_arena_images(
|
86 |
prompt,
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
92 |
seed,
|
93 |
num_images_per_prompt,
|
94 |
-
|
95 |
-
|
|
|
96 |
progress=gr.Progress(track_tqdm=True),
|
97 |
):
|
98 |
if seed == 0:
|
@@ -100,33 +106,41 @@ def generate_arena_images(
|
|
100 |
|
101 |
generator = torch.Generator().manual_seed(seed)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
# Generate images for both models
|
104 |
-
|
105 |
prompt,
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
seed,
|
112 |
num_images_per_prompt,
|
113 |
-
|
114 |
generator,
|
115 |
)
|
116 |
-
|
117 |
prompt,
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
seed,
|
124 |
num_images_per_prompt,
|
125 |
-
|
126 |
generator,
|
127 |
)
|
128 |
|
129 |
-
return
|
130 |
|
131 |
# Define the image generation function for the Individual tab
|
132 |
@spaces.GPU(duration=80)
|
@@ -199,61 +213,102 @@ with gr.Blocks(css=css) as demo:
|
|
199 |
info="Describe the image you want",
|
200 |
placeholder="A cat...",
|
201 |
)
|
202 |
-
|
203 |
-
label="Stable Diffusion Model
|
204 |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
205 |
value="sd3 medium",
|
206 |
)
|
207 |
-
|
208 |
-
label="Stable Diffusion Model
|
209 |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
210 |
value="sdxl",
|
211 |
)
|
212 |
run_button = gr.Button("Run")
|
213 |
-
|
214 |
-
|
215 |
with gr.Accordion("Advanced options", open=False):
|
|
|
216 |
with gr.Row():
|
217 |
-
|
218 |
-
label="Negative Prompt",
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
info="Describe what you don't want in the image",
|
220 |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
221 |
placeholder="Ugly, bad anatomy...",
|
222 |
)
|
223 |
with gr.Row():
|
224 |
-
|
225 |
-
label="Number of Inference Steps",
|
226 |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
227 |
minimum=1,
|
228 |
maximum=50,
|
229 |
value=25,
|
230 |
step=1,
|
231 |
)
|
232 |
-
|
233 |
-
label="
|
234 |
-
info="
|
235 |
-
minimum=
|
236 |
-
maximum=
|
237 |
-
value=
|
238 |
-
step=
|
239 |
)
|
240 |
with gr.Row():
|
241 |
-
|
242 |
-
label="Width",
|
243 |
info="Width of the Image",
|
244 |
minimum=256,
|
245 |
maximum=1344,
|
246 |
step=32,
|
247 |
value=1024,
|
248 |
)
|
249 |
-
|
250 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
info="Height of the Image",
|
252 |
minimum=256,
|
253 |
maximum=1344,
|
254 |
step=32,
|
255 |
value=1024,
|
256 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
with gr.Row():
|
258 |
seed = gr.Slider(
|
259 |
value=42,
|
@@ -275,7 +330,7 @@ with gr.Blocks(css=css) as demo:
|
|
275 |
gr.Examples(
|
276 |
examples=examples,
|
277 |
inputs=[prompt],
|
278 |
-
outputs=[
|
279 |
fn=generate_arena_images,
|
280 |
)
|
281 |
|
@@ -287,17 +342,23 @@ with gr.Blocks(css=css) as demo:
|
|
287 |
fn=generate_arena_images,
|
288 |
inputs=[
|
289 |
prompt,
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
295 |
seed,
|
296 |
num_images_per_prompt,
|
297 |
-
|
298 |
-
|
|
|
299 |
],
|
300 |
-
outputs=[
|
301 |
)
|
302 |
|
303 |
with gr.TabItem("Individual"):
|
|
|
84 |
@spaces.GPU(duration=80)
|
85 |
def generate_arena_images(
|
86 |
prompt,
|
87 |
+
negative_prompt_A,
|
88 |
+
negative_prompt_B,
|
89 |
+
num_inference_steps_A,
|
90 |
+
num_inference_steps_B,
|
91 |
+
height_A,
|
92 |
+
height_B,
|
93 |
+
width_A,
|
94 |
+
width_B,
|
95 |
+
guidance_scale_A,
|
96 |
+
guidance_scale_B,
|
97 |
seed,
|
98 |
num_images_per_prompt,
|
99 |
+
model_choice_A,
|
100 |
+
model_choice_B,
|
101 |
+
use_same_settings,
|
102 |
progress=gr.Progress(track_tqdm=True),
|
103 |
):
|
104 |
if seed == 0:
|
|
|
106 |
|
107 |
generator = torch.Generator().manual_seed(seed)
|
108 |
|
109 |
+
# Apply settings based on use_same_settings
|
110 |
+
if use_same_settings:
|
111 |
+
num_inference_steps_B = num_inference_steps_A
|
112 |
+
height_B = height_A
|
113 |
+
width_B = width_A
|
114 |
+
guidance_scale_B = guidance_scale_A
|
115 |
+
negative_prompt_B = negative_prompt_A
|
116 |
+
|
117 |
# Generate images for both models
|
118 |
+
images_A = generate_single_image(
|
119 |
prompt,
|
120 |
+
negative_prompt_A,
|
121 |
+
num_inference_steps_A,
|
122 |
+
height_A,
|
123 |
+
width_A,
|
124 |
+
guidance_scale_A,
|
125 |
seed,
|
126 |
num_images_per_prompt,
|
127 |
+
model_choice_A,
|
128 |
generator,
|
129 |
)
|
130 |
+
images_B = generate_single_image(
|
131 |
prompt,
|
132 |
+
negative_prompt_B,
|
133 |
+
num_inference_steps_B,
|
134 |
+
height_B,
|
135 |
+
width_B,
|
136 |
+
guidance_scale_B,
|
137 |
seed,
|
138 |
num_images_per_prompt,
|
139 |
+
model_choice_B,
|
140 |
generator,
|
141 |
)
|
142 |
|
143 |
+
return images_A, images_B
|
144 |
|
145 |
# Define the image generation function for the Individual tab
|
146 |
@spaces.GPU(duration=80)
|
|
|
213 |
info="Describe the image you want",
|
214 |
placeholder="A cat...",
|
215 |
)
|
216 |
+
model_choice_A = gr.Dropdown(
|
217 |
+
label="Stable Diffusion Model A",
|
218 |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
219 |
value="sd3 medium",
|
220 |
)
|
221 |
+
model_choice_B = gr.Dropdown(
|
222 |
+
label="Stable Diffusion Model B",
|
223 |
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
224 |
value="sdxl",
|
225 |
)
|
226 |
run_button = gr.Button("Run")
|
227 |
+
result_A = gr.Gallery(label="Generated Images (Model A)", elem_id="gallery_A")
|
228 |
+
result_B = gr.Gallery(label="Generated Images (Model B)", elem_id="gallery_B")
|
229 |
with gr.Accordion("Advanced options", open=False):
|
230 |
+
use_same_settings = gr.Checkbox(label='Use same settings for both models', value=True)
|
231 |
with gr.Row():
|
232 |
+
negative_prompt_A = gr.Textbox(
|
233 |
+
label="Negative Prompt (Model A)",
|
234 |
+
info="Describe what you don't want in the image",
|
235 |
+
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
236 |
+
placeholder="Ugly, bad anatomy...",
|
237 |
+
)
|
238 |
+
negative_prompt_B = gr.Textbox(
|
239 |
+
label="Negative Prompt (Model B)",
|
240 |
info="Describe what you don't want in the image",
|
241 |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
242 |
placeholder="Ugly, bad anatomy...",
|
243 |
)
|
244 |
with gr.Row():
|
245 |
+
num_inference_steps_A = gr.Slider(
|
246 |
+
label="Number of Inference Steps (Model A)",
|
247 |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
248 |
minimum=1,
|
249 |
maximum=50,
|
250 |
value=25,
|
251 |
step=1,
|
252 |
)
|
253 |
+
num_inference_steps_B = gr.Slider(
|
254 |
+
label="Number of Inference Steps (Model B)",
|
255 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
256 |
+
minimum=1,
|
257 |
+
maximum=50,
|
258 |
+
value=25,
|
259 |
+
step=1,
|
260 |
)
|
261 |
with gr.Row():
|
262 |
+
width_A = gr.Slider(
|
263 |
+
label="Width (Model A)",
|
264 |
info="Width of the Image",
|
265 |
minimum=256,
|
266 |
maximum=1344,
|
267 |
step=32,
|
268 |
value=1024,
|
269 |
)
|
270 |
+
width_B = gr.Slider(
|
271 |
+
label="Width (Model B)",
|
272 |
+
info="Width of the Image",
|
273 |
+
minimum=256,
|
274 |
+
maximum=1344,
|
275 |
+
step=32,
|
276 |
+
value=1024,
|
277 |
+
)
|
278 |
+
with gr.Row():
|
279 |
+
height_A = gr.Slider(
|
280 |
+
label="Height (Model A)",
|
281 |
+
info="Height of the Image",
|
282 |
+
minimum=256,
|
283 |
+
maximum=1344,
|
284 |
+
step=32,
|
285 |
+
value=1024,
|
286 |
+
)
|
287 |
+
height_B = gr.Slider(
|
288 |
+
label="Height (Model B)",
|
289 |
info="Height of the Image",
|
290 |
minimum=256,
|
291 |
maximum=1344,
|
292 |
step=32,
|
293 |
value=1024,
|
294 |
)
|
295 |
+
with gr.Row():
|
296 |
+
guidance_scale_A = gr.Slider(
|
297 |
+
label="Guidance Scale (Model A)",
|
298 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
299 |
+
minimum=0.0,
|
300 |
+
maximum=10.0,
|
301 |
+
value=7.5,
|
302 |
+
step=0.1,
|
303 |
+
)
|
304 |
+
guidance_scale_B = gr.Slider(
|
305 |
+
label="Guidance Scale (Model B)",
|
306 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
307 |
+
minimum=0.0,
|
308 |
+
maximum=10.0,
|
309 |
+
value=7.5,
|
310 |
+
step=0.1,
|
311 |
+
)
|
312 |
with gr.Row():
|
313 |
seed = gr.Slider(
|
314 |
value=42,
|
|
|
330 |
gr.Examples(
|
331 |
examples=examples,
|
332 |
inputs=[prompt],
|
333 |
+
outputs=[result_A, result_B],
|
334 |
fn=generate_arena_images,
|
335 |
)
|
336 |
|
|
|
342 |
fn=generate_arena_images,
|
343 |
inputs=[
|
344 |
prompt,
|
345 |
+
negative_prompt_A,
|
346 |
+
negative_prompt_B,
|
347 |
+
num_inference_steps_A,
|
348 |
+
num_inference_steps_B,
|
349 |
+
height_A,
|
350 |
+
height_B,
|
351 |
+
width_A,
|
352 |
+
width_B,
|
353 |
+
guidance_scale_A,
|
354 |
+
guidance_scale_B,
|
355 |
seed,
|
356 |
num_images_per_prompt,
|
357 |
+
model_choice_A,
|
358 |
+
model_choice_B,
|
359 |
+
use_same_settings
|
360 |
],
|
361 |
+
outputs=[result_A, result_B],
|
362 |
)
|
363 |
|
364 |
with gr.TabItem("Individual"):
|