Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import torch
|
2 |
-
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline,
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
@@ -22,22 +22,22 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
22 |
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
|
23 |
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
24 |
)
|
25 |
-
sd3_medium_pipe.
|
26 |
|
27 |
sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
|
29 |
)
|
30 |
-
sd2_1_pipe.
|
31 |
|
32 |
-
sdxl_pipe =
|
33 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
34 |
)
|
35 |
-
sdxl_pipe.
|
36 |
|
37 |
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
|
38 |
"sd-community/sdxl-flash", torch_dtype=torch.float16
|
39 |
)
|
40 |
-
sdxl_flash_pipe.
|
41 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
42 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
43 |
|
|
|
1 |
import torch
|
2 |
+
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
|
|
22 |
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
|
23 |
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
24 |
)
|
25 |
+
sd3_medium_pipe.enable_model_cpu_offload()
|
26 |
|
27 |
sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
|
29 |
)
|
30 |
+
sd2_1_pipe.enable_model_cpu_offload()
|
31 |
|
32 |
+
sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
|
33 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
34 |
)
|
35 |
+
sdxl_pipe.enable_model_cpu_offload()
|
36 |
|
37 |
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
|
38 |
"sd-community/sdxl-flash", torch_dtype=torch.float16
|
39 |
)
|
40 |
+
sdxl_flash_pipe.enable_model_cpu_offload()
|
41 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
42 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
43 |
|