Spaces:
Running
on
Zero
Running
on
Zero
test
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import torch
|
2 |
-
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
@@ -29,17 +29,57 @@ sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
|
|
29 |
)
|
30 |
sd2_1_pipe.to(device)
|
31 |
|
32 |
-
sdxl_pipe =
|
33 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
34 |
)
|
35 |
sdxl_pipe.to(device)
|
36 |
|
37 |
-
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
|
|
38 |
sdxl_flash_pipe.to(device)
|
39 |
-
|
40 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
41 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Define the image generation function for the Arena tab
|
44 |
@spaces.GPU(duration=80)
|
45 |
def generate_arena_images(
|
@@ -88,45 +128,6 @@ def generate_arena_images(
|
|
88 |
|
89 |
return images_1, images_2
|
90 |
|
91 |
-
|
92 |
-
# Helper function to generate images for a single model
|
93 |
-
def generate_single_image(
|
94 |
-
prompt,
|
95 |
-
negative_prompt,
|
96 |
-
num_inference_steps,
|
97 |
-
height,
|
98 |
-
width,
|
99 |
-
guidance_scale,
|
100 |
-
seed,
|
101 |
-
num_images_per_prompt,
|
102 |
-
model_choice,
|
103 |
-
generator,
|
104 |
-
):
|
105 |
-
# Select the correct pipeline based on the model choice
|
106 |
-
if model_choice == "sd3 medium":
|
107 |
-
pipe = sd3_medium_pipe
|
108 |
-
elif model_choice == "sd2.1":
|
109 |
-
pipe = sd2_1_pipe
|
110 |
-
elif model_choice == "sdxl":
|
111 |
-
pipe = sdxl_pipe
|
112 |
-
elif model_choice == "sdxl flash":
|
113 |
-
pipe = sdxl_flash_pipe
|
114 |
-
else:
|
115 |
-
raise ValueError(f"Invalid model choice: {model_choice}")
|
116 |
-
|
117 |
-
output = pipe(
|
118 |
-
prompt=prompt,
|
119 |
-
negative_prompt=negative_prompt,
|
120 |
-
num_inference_steps=num_inference_steps,
|
121 |
-
height=height,
|
122 |
-
width=width,
|
123 |
-
guidance_scale=guidance_scale,
|
124 |
-
generator=generator,
|
125 |
-
num_images_per_prompt=num_images_per_prompt,
|
126 |
-
).images
|
127 |
-
|
128 |
-
return output
|
129 |
-
|
130 |
# Define the image generation function for the Individual tab
|
131 |
@spaces.GPU(duration=80)
|
132 |
def generate_individual_image(
|
|
|
1 |
import torch
|
2 |
+
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, DiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
|
|
29 |
)
|
30 |
sd2_1_pipe.to(device)
|
31 |
|
32 |
+
sdxl_pipe = DiffusionPipeline.from_pretrained(
|
33 |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
34 |
)
|
35 |
sdxl_pipe.to(device)
|
36 |
|
37 |
+
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
|
38 |
+
"sd-community/sdxl-flash", torch_dtype=torch.float16
|
39 |
+
)
|
40 |
sdxl_flash_pipe.to(device)
|
|
|
41 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
42 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
43 |
|
44 |
+
# Helper function to generate images for a single model
|
45 |
+
@spaces.GPU(duration=80)
|
46 |
+
def generate_single_image(
|
47 |
+
prompt,
|
48 |
+
negative_prompt,
|
49 |
+
num_inference_steps,
|
50 |
+
height,
|
51 |
+
width,
|
52 |
+
guidance_scale,
|
53 |
+
seed,
|
54 |
+
num_images_per_prompt,
|
55 |
+
model_choice,
|
56 |
+
generator,
|
57 |
+
):
|
58 |
+
# Select the correct pipeline based on the model choice
|
59 |
+
if model_choice == "sd3 medium":
|
60 |
+
pipe = sd3_medium_pipe
|
61 |
+
elif model_choice == "sd2.1":
|
62 |
+
pipe = sd2_1_pipe
|
63 |
+
elif model_choice == "sdxl":
|
64 |
+
pipe = sdxl_pipe
|
65 |
+
elif model_choice == "sdxl flash":
|
66 |
+
pipe = sdxl_flash_pipe
|
67 |
+
else:
|
68 |
+
raise ValueError(f"Invalid model choice: {model_choice}")
|
69 |
+
|
70 |
+
output = pipe(
|
71 |
+
prompt=prompt,
|
72 |
+
negative_prompt=negative_prompt,
|
73 |
+
num_inference_steps=num_inference_steps,
|
74 |
+
height=height,
|
75 |
+
width=width,
|
76 |
+
guidance_scale=guidance_scale,
|
77 |
+
generator=generator,
|
78 |
+
num_images_per_prompt=num_images_per_prompt,
|
79 |
+
).images
|
80 |
+
|
81 |
+
return output
|
82 |
+
|
83 |
# Define the image generation function for the Arena tab
|
84 |
@spaces.GPU(duration=80)
|
85 |
def generate_arena_images(
|
|
|
128 |
|
129 |
return images_1, images_2
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# Define the image generation function for the Individual tab
|
132 |
@spaces.GPU(duration=80)
|
133 |
def generate_individual_image(
|