Spaces:
Runtime error
Runtime error
File size: 16,011 Bytes
6b8e3c4 077fc91 6b8e3c4 01bc85d 2f74de8 daeee36 640f5b4 7544b79 0a1a41a daeee36 0a1a41a 7544b79 0a1a41a 7544b79 0a1a41a daeee36 9f0c4b3 daeee36 76993d9 8efff47 daeee36 0457b5c 9f0c4b3 daeee36 9f0c4b3 daeee36 9f0c4b3 daeee36 15a3702 9f0c4b3 15a3702 daeee36 6b8e3c4 9f0c4b3 7544b79 9f0c4b3 7544b79 9f0c4b3 7544b79 9f0c4b3 7544b79 9f0c4b3 6b8e3c4 9780d7b 1d564b4 6b8e3c4 9f0c4b3 6b8e3c4 9780d7b 6b8e3c4 9780d7b 6b8e3c4 9780d7b 9f0c4b3 2ab737a 9f0c4b3 de13e02 9f0c4b3 01bc85d 2d80e04 c09fa67 ca166b1 01bc85d 801d890 9f0c4b3 01bc85d 9f0c4b3 01bc85d ca166b1 01bc85d 9f0c4b3 01bc85d 9f0c4b3 01bc85d 9f0c4b3 01bc85d 9f0c4b3 2f74de8 9f0c4b3 2f74de8 9f0c4b3 7544b79 effc523 7544b79 19a222e 7544b79 2911be1 effc523 9f0c4b3 313008d effc523 01bc85d 706546d ca166b1 706546d 9f0c4b3 7d22d48 9f0c4b3 706546d 9f0c4b3 706546d 9f0c4b3 d2d76c9 9f0c4b3 d2d76c9 ba4f873 9f0c4b3 d2d76c9 9f0c4b3 d2d76c9 9f0c4b3 d2d76c9 6b8e3c4 640f5b4 9f0c4b3 640f5b4 cf01ea3 640f5b4 cf01ea3 640f5b4 cf01ea3 640f5b4 cf01ea3 9f0c4b3 cf01ea3 640f5b4 9c32f6d bcdfff1 640f5b4 39f3339 9f0c4b3 39f3339 9f0c4b3 39f3339 6b8e3c4 9f0c4b3 67eca52 640f5b4 b66242e 6b8e3c4 077fc91 640f5b4 9f0c4b3 640f5b4 077fc91 6b8e3c4 640f5b4 9f0c4b3 077fc91 5f453af 39f3339 9f0c4b3 640f5b4 fea2110 640f5b4 9f0c4b3 711582a 9f0c4b3 43dcd18 711582a 077fc91 f465c1d 6b8e3c4 c810b3c 9f0c4b3 c810b3c 0a1a41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
import gradio as gr
import supervision as sv
import torch
import numpy as np
from PIL import Image
import requests
import open3d as o3d
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
def map_image_range(depth, min_value, max_value):
"""
Maps the values of a numpy image array to a specified range.
Args:
image (numpy.ndarray): Input image array with values ranging from 0 to 1.
min_value (float): Minimum value of the new range.
max_value (float): Maximum value of the new range.
Returns:
numpy.ndarray: Image array with values mapped to the specified range.
"""
# Ensure the input image is a numpy array
print(np.min(depth))
print(np.max(depth))
depth = np.array(depth)
# map the depth values are between 0 and 1
depth = (depth - depth.min()) / (depth.max() - depth.min())
# invert
depth = 1 - depth
print(np.min(depth))
print(np.max(depth))
# Map the values to the specified range
mapped_image = (depth - 0) * (max_value - min_value) / (1 - 0) + min_value
print(np.min(mapped_image))
print(np.max(mapped_image))
return mapped_image
def PCL(mask, depth):
assert mask.shape == depth.shape
assert type(mask) == np.ndarray
assert type(depth) == np.ndarray
rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
rgb_mask[mask] = (255, 0, 0)
print(np.unique(rgb_mask))
depth_o3d = o3d.geometry.Image(depth)
image_o3d = o3d.geometry.Image(rgb_mask)
# print(len(depth_o3d))
# print(len(image_o3d))
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault
),
)
# Step 4: Convert PointCloud data to a NumPy array
# print(len(pcd))
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
print(np.unique(colors, axis=0))
print(np.unique(colors, axis=1))
print(np.unique(colors))
mask = colors[:, 0] == 1.0
print(mask.sum())
print(colors.shape)
points = points[mask]
colors = colors[mask]
return points, colors
def PCL_rgb(rgb, depth):
# assert rgb.shape == depth.shape
assert type(rgb) == np.ndarray
assert type(depth) == np.ndarray
depth_o3d = o3d.geometry.Image(depth)
image_o3d = o3d.geometry.Image(rgb)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault
),
)
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
return points, colors
class DepthPredictor:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
self.model.eval()
def predict(self, image):
# prepare image for the model
encoding = self.feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = self.model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
# output = 1 - (output/np.max(output))
return output
def generate_pcl(self, image):
print(np.array(image).shape)
depth = self.predict(image)
print(depth.shape)
# Step 2: Create an RGBD image from the RGB and depth image
depth_o3d = o3d.geometry.Image(depth)
image_o3d = o3d.geometry.Image(np.array(image))
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault
),
)
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
print(points.shape, colors.shape)
return points, colors
def generate_fig(self, image):
points, colors = self.generate_pcl(image)
data = {
"x": points[:, 0],
"y": points[:, 1],
"z": points[:, 2],
"red": colors[:, 0],
"green": colors[:, 1],
"blue": colors[:, 2],
}
df = pd.DataFrame(data)
size = np.zeros(len(df))
size[:] = 0.01
# Step 6: Create a 3D scatter plot using Plotly Express
fig = px.scatter_3d(df, x="x", y="y", z="z", color="red", size=size)
return fig
def generate_fig2(self, image):
points, colors = self.generate_pcl(image)
# Step 6: Create a 3D scatter plot using Plotly Express
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.scatter(points, size=0.01, c=colors, marker="o")
return fig
def generate_obj_rgb(self, image, n_samples, cube_size, max_depth, min_depth):
# Step 1: Create a point cloud
depth = self.predict(image)
image = np.array(image)
depth = map_image_range(depth, min_depth, max_depth)
point_cloud, color_array = PCL_rgb(image, depth)
idxs = np.random.choice(len(point_cloud), int(n_samples))
point_cloud = point_cloud[idxs]
color_array = color_array[idxs]
# Create a mesh to hold the colored cubes
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
for point, color in zip(point_cloud, color_array):
cube = o3d.geometry.TriangleMesh.create_box(
width=cube_size, height=cube_size, depth=cube_size
)
cube.translate(-point)
cube.paint_uniform_color(color)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
def generate_obj_masks(self, image, n_samples, masks, cube_size):
# Generate a point cloud
point_cloud, color_array = self.generate_pcl(image)
print(point_cloud.shape)
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
cs = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
for c, (mask, _) in zip(cs, masks):
mask = mask.ravel()
point_cloud_subset, color_array_subset = (
point_cloud[mask],
color_array[mask],
)
idxs = np.random.choice(len(point_cloud_subset), int(n_samples))
point_cloud_subset = point_cloud_subset[idxs]
for point in point_cloud_subset:
cube = o3d.geometry.TriangleMesh.create_box(
width=cube_size, height=cube_size, depth=cube_size
)
cube.translate(-point)
cube.paint_uniform_color(c)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
def generate_obj_masks2(
self, image, masks, cube_size, n_samples, min_depth, max_depth
):
# Generate a point cloud
depth = self.predict(image)
# depth = map_image_range(depth, min_depth, max_depth)
image = np.array(image)
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
print(len(masks))
cs = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
for c, (mask, _) in zip(cs, masks):
points, _ = PCL(mask, depth)
# idxs = np.random.choice(len(points), int(n_samples))
# points = points[idxs]
for point in points:
cube = o3d.geometry.TriangleMesh.create_box(
width=cube_size, height=cube_size, depth=cube_size
)
cube.translate(-point)
cube.paint_uniform_color(c)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
import numpy as np
from typing import Optional, Tuple
class CustomSamPredictor(SamPredictor):
def __init__(
self,
sam_model,
) -> None:
super().__init__(sam_model)
def encode_image(
self,
image: np.ndarray,
image_format: str = "RGB",
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method.
Arguments:
image (np.ndarray): The image for calculating masks. Expects an
image in HWC uint8 format, with pixel values in [0, 255].
image_format (str): The color format of the image, in ['RGB', 'BGR'].
"""
assert image_format in [
"RGB",
"BGR",
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
if image_format != self.model.image_format:
image = image[..., ::-1]
# Transform the image to the form expected by the model
input_image = self.transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device=self.device)
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[
None, :, :, :
]
self.set_torch_image(input_image_torch, image.shape[:2])
return self.get_image_embedding()
def decode_and_predict(
self,
embedding: torch.Tensor,
point_coords: Optional[np.ndarray] = None,
point_labels: Optional[np.ndarray] = None,
box: Optional[np.ndarray] = None,
mask_input: Optional[np.ndarray] = None,
multimask_output: bool = True,
return_logits: bool = False,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Decodes the provided image embedding and makes mask predictions based on prompts.
Arguments:
embedding (torch.Tensor): The image embedding to decode.
... (other arguments from the predict function)
Returns:
(np.ndarray): The output masks in CxHxW format.
(np.ndarray): An array of quality predictions for each mask.
(np.ndarray): Low resolution mask logits for subsequent iterations.
"""
self.features = embedding
self.is_image_set = True
return self.predict(
point_coords=point_coords,
point_labels=point_labels,
box=box,
mask_input=mask_input,
multimask_output=multimask_output,
return_logits=return_logits,
)
def dummy_set_torch_image(
self,
transformed_image: torch.Tensor,
original_image_size: Tuple[int, ...],
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method. Expects the input
image to be already transformed to the format expected by the model.
Arguments:
transformed_image (torch.Tensor): The input image, with shape
1x3xHxW, which has been transformed with ResizeLongestSide.
original_image_size (tuple(int, int)): The size of the image
before transformation, in (H, W) format.
"""
assert (
len(transformed_image.shape) == 4
and transformed_image.shape[1] == 3
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
self.reset_image()
self.original_size = original_image_size
self.input_size = tuple(transformed_image.shape[-2:])
input_image = self.model.preprocess(transformed_image)
# The following line is commented out to avoid encoding on cpu
# self.features = self.model.image_encoder(input_image)
self.is_image_set = True
def dummy_set_image(
self,
image: np.ndarray,
image_format: str = "RGB",
) -> None:
"""
Calculates the image embeddings for the provided image, allowing
masks to be predicted with the 'predict' method.
Arguments:
image (np.ndarray): The image for calculating masks. Expects an
image in HWC uint8 format, with pixel values in [0, 255].
image_format (str): The color format of the image, in ['RGB', 'BGR'].
"""
assert image_format in [
"RGB",
"BGR",
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
if image_format != self.model.image_format:
image = image[..., ::-1]
# Transform the image to the form expected by the model
input_image = self.transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device=self.device)
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[
None, :, :, :
]
self.dummy_set_torch_image(input_image_torch, image.shape[:2])
class SegmentPredictor:
def __init__(self, device=None):
MODEL_TYPE = "vit_h"
checkpoint = "sam_vit_h_4b8939.pth"
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint)
# Select device
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
sam.to(device=self.device)
self.mask_generator = SamAutomaticMaskGenerator(sam)
self.conditioned_pred = CustomSamPredictor(sam)
def encode(self, image):
image = np.array(image)
return self.conditioned_pred.encode_image(image)
def dummy_encode(self, image):
image = np.array(image)
self.conditioned_pred.dummy_set_image(image)
def cond_pred(self, embedding, pts, lbls):
lbls = np.array(lbls)
pts = np.array(pts)
masks, _, _ = self.conditioned_pred.decode_and_predict(
embedding, point_coords=pts, point_labels=lbls, multimask_output=True
)
idxs = np.argsort(-masks.sum(axis=(1, 2)))
sam_masks = []
for n, i in enumerate(idxs):
sam_masks.append((masks[i], str(n)))
return sam_masks
def segment_everything(self, image):
image = np.array(image)
sam_result = self.mask_generator.generate(image)
sam_masks = []
for i, mask in enumerate(sam_result):
sam_masks.append((mask["segmentation"], str(i)))
return sam_masks
|