Spaces:
Runtime error
Runtime error
s194649
commited on
Commit
·
0a1a41a
1
Parent(s):
2a1828c
fixed circular import
Browse files- inference.py +29 -2
- utils.py +0 -24
inference.py
CHANGED
@@ -10,9 +10,30 @@ import open3d as o3d
|
|
10 |
import pandas as pd
|
11 |
import plotly.express as px
|
12 |
import matplotlib.pyplot as plt
|
13 |
-
from utils import map_image_range
|
14 |
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def PCL(mask, depth):
|
18 |
assert mask.shape == depth.shape
|
@@ -205,4 +226,10 @@ class SegmentPredictor:
|
|
205 |
sam_masks = []
|
206 |
for i,mask in enumerate(sam_result):
|
207 |
sam_masks.append((mask["segmentation"], str(i)))
|
208 |
-
return sam_masks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import pandas as pd
|
11 |
import plotly.express as px
|
12 |
import matplotlib.pyplot as plt
|
|
|
13 |
|
14 |
+
def map_image_range(image, min_value, max_value):
|
15 |
+
"""
|
16 |
+
Maps the values of a numpy image array to a specified range.
|
17 |
|
18 |
+
Args:
|
19 |
+
image (numpy.ndarray): Input image array with values ranging from 0 to 1.
|
20 |
+
min_value (float): Minimum value of the new range.
|
21 |
+
max_value (float): Maximum value of the new range.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
numpy.ndarray: Image array with values mapped to the specified range.
|
25 |
+
"""
|
26 |
+
# Ensure the input image is a numpy array
|
27 |
+
if not isinstance(image, np.ndarray):
|
28 |
+
raise ValueError("Input image must be a numpy array.")
|
29 |
+
|
30 |
+
# Ensure the image values are within the valid range (0 to 1)
|
31 |
+
if not (0 <= np.min(image) <= 1) or not (0 <= np.max(image) <= 1):
|
32 |
+
raise ValueError("Input image values must be in the range [0, 1].")
|
33 |
+
|
34 |
+
# Map the values to the specified range
|
35 |
+
mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value
|
36 |
+
return mapped_image
|
37 |
|
38 |
def PCL(mask, depth):
|
39 |
assert mask.shape == depth.shape
|
|
|
226 |
sam_masks = []
|
227 |
for i,mask in enumerate(sam_result):
|
228 |
sam_masks.append((mask["segmentation"], str(i)))
|
229 |
+
return sam_masks
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
utils.py
CHANGED
@@ -196,27 +196,3 @@ def PCL3(image):
|
|
196 |
return fig
|
197 |
|
198 |
import numpy as np
|
199 |
-
|
200 |
-
def map_image_range(image, min_value, max_value):
|
201 |
-
"""
|
202 |
-
Maps the values of a numpy image array to a specified range.
|
203 |
-
|
204 |
-
Args:
|
205 |
-
image (numpy.ndarray): Input image array with values ranging from 0 to 1.
|
206 |
-
min_value (float): Minimum value of the new range.
|
207 |
-
max_value (float): Maximum value of the new range.
|
208 |
-
|
209 |
-
Returns:
|
210 |
-
numpy.ndarray: Image array with values mapped to the specified range.
|
211 |
-
"""
|
212 |
-
# Ensure the input image is a numpy array
|
213 |
-
if not isinstance(image, np.ndarray):
|
214 |
-
raise ValueError("Input image must be a numpy array.")
|
215 |
-
|
216 |
-
# Ensure the image values are within the valid range (0 to 1)
|
217 |
-
if not (0 <= np.min(image) <= 1) or not (0 <= np.max(image) <= 1):
|
218 |
-
raise ValueError("Input image values must be in the range [0, 1].")
|
219 |
-
|
220 |
-
# Map the values to the specified range
|
221 |
-
mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value
|
222 |
-
return mapped_image
|
|
|
196 |
return fig
|
197 |
|
198 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|