s194649 commited on
Commit
0a1a41a
·
1 Parent(s): 2a1828c

fixed circular import

Browse files
Files changed (2) hide show
  1. inference.py +29 -2
  2. utils.py +0 -24
inference.py CHANGED
@@ -10,9 +10,30 @@ import open3d as o3d
10
  import pandas as pd
11
  import plotly.express as px
12
  import matplotlib.pyplot as plt
13
- from utils import map_image_range
14
 
 
 
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  def PCL(mask, depth):
18
  assert mask.shape == depth.shape
@@ -205,4 +226,10 @@ class SegmentPredictor:
205
  sam_masks = []
206
  for i,mask in enumerate(sam_result):
207
  sam_masks.append((mask["segmentation"], str(i)))
208
- return sam_masks
 
 
 
 
 
 
 
10
  import pandas as pd
11
  import plotly.express as px
12
  import matplotlib.pyplot as plt
 
13
 
14
+ def map_image_range(image, min_value, max_value):
15
+ """
16
+ Maps the values of a numpy image array to a specified range.
17
 
18
+ Args:
19
+ image (numpy.ndarray): Input image array with values ranging from 0 to 1.
20
+ min_value (float): Minimum value of the new range.
21
+ max_value (float): Maximum value of the new range.
22
+
23
+ Returns:
24
+ numpy.ndarray: Image array with values mapped to the specified range.
25
+ """
26
+ # Ensure the input image is a numpy array
27
+ if not isinstance(image, np.ndarray):
28
+ raise ValueError("Input image must be a numpy array.")
29
+
30
+ # Ensure the image values are within the valid range (0 to 1)
31
+ if not (0 <= np.min(image) <= 1) or not (0 <= np.max(image) <= 1):
32
+ raise ValueError("Input image values must be in the range [0, 1].")
33
+
34
+ # Map the values to the specified range
35
+ mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value
36
+ return mapped_image
37
 
38
  def PCL(mask, depth):
39
  assert mask.shape == depth.shape
 
226
  sam_masks = []
227
  for i,mask in enumerate(sam_result):
228
  sam_masks.append((mask["segmentation"], str(i)))
229
+ return sam_masks
230
+
231
+
232
+
233
+
234
+
235
+
utils.py CHANGED
@@ -196,27 +196,3 @@ def PCL3(image):
196
  return fig
197
 
198
  import numpy as np
199
-
200
- def map_image_range(image, min_value, max_value):
201
- """
202
- Maps the values of a numpy image array to a specified range.
203
-
204
- Args:
205
- image (numpy.ndarray): Input image array with values ranging from 0 to 1.
206
- min_value (float): Minimum value of the new range.
207
- max_value (float): Maximum value of the new range.
208
-
209
- Returns:
210
- numpy.ndarray: Image array with values mapped to the specified range.
211
- """
212
- # Ensure the input image is a numpy array
213
- if not isinstance(image, np.ndarray):
214
- raise ValueError("Input image must be a numpy array.")
215
-
216
- # Ensure the image values are within the valid range (0 to 1)
217
- if not (0 <= np.min(image) <= 1) or not (0 <= np.max(image) <= 1):
218
- raise ValueError("Input image values must be in the range [0, 1].")
219
-
220
- # Map the values to the specified range
221
- mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value
222
- return mapped_image
 
196
  return fig
197
 
198
  import numpy as np