Spaces:
Runtime error
Runtime error
jens
commited on
Commit
·
8efff47
1
Parent(s):
ba4f873
debug
Browse files- inference.py +5 -2
inference.py
CHANGED
@@ -37,13 +37,16 @@ def PCL(mask, depth):
|
|
37 |
assert type(depth) == np.ndarray
|
38 |
rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
|
39 |
rgb_mask[mask] = (255, 0, 0)
|
40 |
-
print(
|
41 |
depth_o3d = o3d.geometry.Image(depth)
|
42 |
image_o3d = o3d.geometry.Image(rgb_mask)
|
|
|
|
|
43 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
44 |
# Step 3: Create a PointCloud from the RGBD image
|
45 |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
|
46 |
# Step 4: Convert PointCloud data to a NumPy array
|
|
|
47 |
points = np.asarray(pcd.points)
|
48 |
colors = np.asarray(pcd.colors)
|
49 |
print(np.unique(colors, axis=0))
|
@@ -163,7 +166,7 @@ class DepthPredictor:
|
|
163 |
def generate_obj_masks2(self, image, masks, cube_size, n_samples, min_depth, max_depth):
|
164 |
# Generate a point cloud
|
165 |
depth = self.predict(image)
|
166 |
-
depth = map_image_range(depth, min_depth, max_depth)
|
167 |
image = np.array(image)
|
168 |
mesh = o3d.geometry.TriangleMesh()
|
169 |
# Create cubes and add them to the mesh
|
|
|
37 |
assert type(depth) == np.ndarray
|
38 |
rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
|
39 |
rgb_mask[mask] = (255, 0, 0)
|
40 |
+
print(np.unique(rgb_mask))
|
41 |
depth_o3d = o3d.geometry.Image(depth)
|
42 |
image_o3d = o3d.geometry.Image(rgb_mask)
|
43 |
+
print(len(depth_o3d))
|
44 |
+
print(len(image_o3d))
|
45 |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
46 |
# Step 3: Create a PointCloud from the RGBD image
|
47 |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
|
48 |
# Step 4: Convert PointCloud data to a NumPy array
|
49 |
+
print(len(pcd))
|
50 |
points = np.asarray(pcd.points)
|
51 |
colors = np.asarray(pcd.colors)
|
52 |
print(np.unique(colors, axis=0))
|
|
|
166 |
def generate_obj_masks2(self, image, masks, cube_size, n_samples, min_depth, max_depth):
|
167 |
# Generate a point cloud
|
168 |
depth = self.predict(image)
|
169 |
+
#depth = map_image_range(depth, min_depth, max_depth)
|
170 |
image = np.array(image)
|
171 |
mesh = o3d.geometry.TriangleMesh()
|
172 |
# Create cubes and add them to the mesh
|