File size: 14,646 Bytes
6b8e3c4
077fc91
6b8e3c4
 
 
 
 
 
01bc85d
 
 
2f74de8
daeee36
640f5b4
 
 
 
0a1a41a
 
 
daeee36
0a1a41a
 
 
 
 
 
 
 
 
3105d8e
 
430fde6
0a1a41a
 
 
daeee36
 
 
 
 
76993d9
 
8efff47
daeee36
0457b5c
ae1d3bb
 
daeee36
 
 
 
ae1d3bb
daeee36
 
15a3702
 
 
55bcfca
15a3702
 
daeee36
 
 
6b8e3c4
 
 
 
9780d7b
1d564b4
6b8e3c4
077fc91
6b8e3c4
 
9780d7b
 
6b8e3c4
9780d7b
6b8e3c4
9780d7b
 
 
 
 
 
 
2ab737a
 
430fde6
de13e02
9780d7b
01bc85d
2d80e04
c09fa67
ca166b1
01bc85d
 
801d890
01bc85d
 
 
 
 
 
ca166b1
01bc85d
 
 
 
 
 
 
 
 
 
 
 
2f74de8
 
 
 
 
 
 
 
effc523
706546d
effc523
 
313008d
effc523
2911be1
effc523
 
 
 
 
 
706546d
313008d
effc523
 
 
 
 
 
01bc85d
706546d
 
 
ca166b1
706546d
 
 
 
7d22d48
706546d
 
 
 
 
 
 
 
 
 
 
 
01bc85d
2a1828c
d2d76c9
 
8efff47
d2d76c9
 
 
ba4f873
d2d76c9
 
 
4731957
 
d2d76c9
 
 
 
 
 
 
 
 
 
6b8e3c4
 
640f5b4
 
 
 
 
 
 
 
 
 
cf01ea3
 
 
 
 
640f5b4
cf01ea3
 
640f5b4
 
cf01ea3
 
640f5b4
 
cf01ea3
 
 
 
 
 
 
 
 
 
 
 
640f5b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c32f6d
bcdfff1
640f5b4
 
 
 
 
 
 
 
 
39f3339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8e3c4
67eca52
640f5b4
b66242e
 
6b8e3c4
077fc91
640f5b4
 
 
 
077fc91
6b8e3c4
640f5b4
6b8e3c4
077fc91
 
5f453af
39f3339
 
 
 
077fc91
640f5b4
fea2110
 
640f5b4
 
077fc91
 
 
 
c93bd34
711582a
43dcd18
 
711582a
077fc91
 
 
f465c1d
6b8e3c4
c810b3c
 
 
0a1a41a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
from transformers import DPTImageProcessor, DPTForDepthEstimation
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
import gradio as gr
import supervision as sv
import torch
import numpy as np
from PIL import Image
import requests
import open3d as o3d
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt





def map_image_range(image, min_value, max_value):
    """
    Maps the values of a numpy image array to a specified range.

    Args:
        image (numpy.ndarray): Input image array with values ranging from 0 to 1.
        min_value (float): Minimum value of the new range.
        max_value (float): Maximum value of the new range.

    Returns:
        numpy.ndarray: Image array with values mapped to the specified range.
    """
    # Ensure the input image is a numpy array
    print(np.min(image))
    print(np.max(image))

    # Map the values to the specified range
    mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value
    return mapped_image

def PCL(mask, depth):
    assert mask.shape == depth.shape
    assert type(mask) == np.ndarray
    assert type(depth) == np.ndarray
    rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
    rgb_mask[mask] = (255, 0, 0)
    print(np.unique(rgb_mask))
    depth_o3d = o3d.geometry.Image(depth)
    image_o3d = o3d.geometry.Image(rgb_mask)
    #print(len(depth_o3d))
    #print(len(image_o3d))
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
    # Step 3: Create a PointCloud from the RGBD image
    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
    # Step 4: Convert PointCloud data to a NumPy array
    #print(len(pcd))
    points = np.asarray(pcd.points)
    colors = np.asarray(pcd.colors)
    print(np.unique(colors, axis=0))
    print(np.unique(colors, axis=1))
    print(np.unique(colors))
    mask = (colors[:, 0] == 1.)
    print(mask.sum())
    print(colors.shape)
    points = points[mask]
    colors = colors[mask]
    return points, colors

class DepthPredictor:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
        self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
        self.model.eval()
    
    def predict(self, image):
        # prepare image for the model
        encoding = self.feature_extractor(image, return_tensors="pt")
        # forward pass
        with torch.no_grad():
            outputs = self.model(**encoding)
            predicted_depth = outputs.predicted_depth
            # interpolate to original size
            prediction = torch.nn.functional.interpolate(
                                predicted_depth.unsqueeze(1),
                                size=image.size[::-1],
                                mode="bicubic",
                                align_corners=False,
                        ).squeeze()
        
        output = prediction.cpu().numpy()
        #output = 1 - (output/np.max(output))
        return output
    
    def generate_pcl(self, image):
        print(np.array(image).shape)
        depth = self.predict(image)
        print(depth.shape)
        # Step 2: Create an RGBD image from the RGB and depth image
        depth_o3d = o3d.geometry.Image(depth)
        image_o3d = o3d.geometry.Image(np.array(image))
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
        # Step 3: Create a PointCloud from the RGBD image
        pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
        # Step 4: Convert PointCloud data to a NumPy array
        points = np.asarray(pcd.points)
        colors = np.asarray(pcd.colors)
        print(points.shape, colors.shape)
        return points, colors
    
    def generate_fig(self, image):
        points, colors = self.generate_pcl(image)
        data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
            'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
        df = pd.DataFrame(data)
        size = np.zeros(len(df))
        size[:] = 0.01
        # Step 6: Create a 3D scatter plot using Plotly Express
        fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size)
        return fig
     
    def generate_fig2(self, image):
        points, colors = self.generate_pcl(image)
        # Step 6: Create a 3D scatter plot using Plotly Express
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        ax.scatter(points,size=0.01, c=colors, marker='o')
        return fig
    
    def generate_obj_rgb(self, image, n_samples, cube_size):
        # Step 1: Create a point cloud
        point_cloud, color_array = self.generate_pcl(image)
        #point_cloud, color_array = point_cloud[mask.ravel()[:-1]], color_array[mask.ravel()[:-1]]
        # sample 1000 points
        idxs = np.random.choice(len(point_cloud), int(n_samples))
        point_cloud = point_cloud[idxs]
        color_array = color_array[idxs]
        # Create a mesh to hold the colored cubes
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        for point, color in zip(point_cloud, color_array):
            cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
            cube.translate(-point)
            cube.paint_uniform_color(color)
            mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file

    def generate_obj_masks(self, image, n_samples, masks, cube_size):
        # Generate a point cloud
        point_cloud, color_array = self.generate_pcl(image)
        print(point_cloud.shape)
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        cs = [(255,0,0),(0,255,0),(0,0,255)]
        for c,(mask, _) in zip(cs, masks):
            mask = mask.ravel()
            point_cloud_subset, color_array_subset = point_cloud[mask], color_array[mask]
            idxs = np.random.choice(len(point_cloud_subset), int(n_samples))
            point_cloud_subset = point_cloud_subset[idxs]
            for point in point_cloud_subset:
                cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
                cube.translate(-point)
                cube.paint_uniform_color(c)
                mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file
    
    def generate_obj_masks2(self, image, masks, cube_size, n_samples, min_depth, max_depth):
        # Generate a point cloud
        depth = self.predict(image)
        #depth = map_image_range(depth, min_depth, max_depth)
        image = np.array(image)
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        print(len(masks))
        cs = [(255,0,0),(0,255,0),(0,0,255)]
        for c,(mask, _) in zip(cs, masks):
            points, _ = PCL(mask, depth)
            #idxs = np.random.choice(len(points), int(n_samples))
            #points = points[idxs]
            for point in points:
                cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
                cube.translate(-point)
                cube.paint_uniform_color(c)
                mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file
    


import numpy as np
from typing import Optional, Tuple

class CustomSamPredictor(SamPredictor):
    def __init__(
        self,
        sam_model,
    ) -> None:
        super().__init__(sam_model)

    def encode_image(
        self,
        image: np.ndarray,
        image_format: str = "RGB",
    ) -> None:
        """
        Calculates the image embeddings for the provided image, allowing
        masks to be predicted with the 'predict' method.

        Arguments:
          image (np.ndarray): The image for calculating masks. Expects an
            image in HWC uint8 format, with pixel values in [0, 255].
          image_format (str): The color format of the image, in ['RGB', 'BGR'].
        """
        assert image_format in [
            "RGB",
            "BGR",
        ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
        if image_format != self.model.image_format:
            image = image[..., ::-1]

        # Transform the image to the form expected by the model
        input_image = self.transform.apply_image(image)
        input_image_torch = torch.as_tensor(input_image, device=self.device)
        input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
        self.set_torch_image(input_image_torch, image.shape[:2])
        return self.get_image_embedding()

    def decode_and_predict(
        self,
        embedding: torch.Tensor,
        point_coords: Optional[np.ndarray] = None,
        point_labels: Optional[np.ndarray] = None,
        box: Optional[np.ndarray] = None,
        mask_input: Optional[np.ndarray] = None,
        multimask_output: bool = True,
        return_logits: bool = False,
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Decodes the provided image embedding and makes mask predictions based on prompts.

        Arguments:
          embedding (torch.Tensor): The image embedding to decode.
          ... (other arguments from the predict function)

        Returns:
          (np.ndarray): The output masks in CxHxW format.
          (np.ndarray): An array of quality predictions for each mask.
          (np.ndarray): Low resolution mask logits for subsequent iterations.
        """
        self.features = embedding
        self.is_image_set = True
        return self.predict(
            point_coords=point_coords,
            point_labels=point_labels,
            box=box,
            mask_input=mask_input,
            multimask_output=multimask_output,
            return_logits=return_logits,
        )

    def dummy_set_torch_image(
        self,
        transformed_image: torch.Tensor,
        original_image_size: Tuple[int, ...],
    ) -> None:
        """
        Calculates the image embeddings for the provided image, allowing
        masks to be predicted with the 'predict' method. Expects the input
        image to be already transformed to the format expected by the model.

        Arguments:
          transformed_image (torch.Tensor): The input image, with shape
            1x3xHxW, which has been transformed with ResizeLongestSide.
          original_image_size (tuple(int, int)): The size of the image
            before transformation, in (H, W) format.
        """
        assert (
            len(transformed_image.shape) == 4
            and transformed_image.shape[1] == 3
            and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
        ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
        self.reset_image()

        self.original_size = original_image_size
        self.input_size = tuple(transformed_image.shape[-2:])
        input_image = self.model.preprocess(transformed_image)
        # The following line is commented out to avoid encoding on cpu
        #self.features = self.model.image_encoder(input_image)
        self.is_image_set = True

    def dummy_set_image(
        self,
        image: np.ndarray,
        image_format: str = "RGB",
    ) -> None:
        """
        Calculates the image embeddings for the provided image, allowing
        masks to be predicted with the 'predict' method.

        Arguments:
          image (np.ndarray): The image for calculating masks. Expects an
            image in HWC uint8 format, with pixel values in [0, 255].
          image_format (str): The color format of the image, in ['RGB', 'BGR'].
        """
        assert image_format in [
            "RGB",
            "BGR",
        ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
        if image_format != self.model.image_format:
            image = image[..., ::-1]

        # Transform the image to the form expected by the model
        input_image = self.transform.apply_image(image)
        input_image_torch = torch.as_tensor(input_image, device=self.device)
        input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]

        self.dummy_set_torch_image(input_image_torch, image.shape[:2])

class SegmentPredictor:
    def __init__(self, device=None):
        MODEL_TYPE = "vit_h"
        checkpoint = "sam_vit_h_4b8939.pth"
        sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint)
        # Select device
        if device is None:
            self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        else:
            self.device = device
        sam.to(device=self.device)
        self.mask_generator = SamAutomaticMaskGenerator(sam)
        self.conditioned_pred = CustomSamPredictor(sam)
    
    def encode(self, image):
        image = np.array(image)
        return self.conditioned_pred.encode_image(image)

    def dummy_encode(self, image):
        image = np.array(image)
        self.conditioned_pred.dummy_set_image(image)
    
    def cond_pred(self, embedding, pts, lbls):
        lbls = np.array(lbls)
        pts = np.array(pts)
        masks, _, _ = self.conditioned_pred.decode_and_predict(
            embedding,
            point_coords=pts,
            point_labels=lbls,
            multimask_output=True
            )
        idxs = np.argsort(-masks.sum(axis=(1,2)))
        sam_masks = []
        for n,i in enumerate(idxs):
            sam_masks.append((masks[i], str(n)))
        return sam_masks


    def segment_everything(self, image):
        image = np.array(image)
        sam_result = self.mask_generator.generate(image)
        sam_masks = []
        for i,mask in enumerate(sam_result):
            sam_masks.append((mask["segmentation"], str(i)))
        return sam_masks