File size: 1,415 Bytes
a24294c
d13afd7
7b475df
d13afd7
7b475df
d13afd7
7b475df
 
 
 
d13afd7
 
 
7b475df
d13afd7
 
 
7b475df
d13afd7
7b475df
 
d13afd7
 
a24294c
64b241d
5d657f5
 
64b241d
5d657f5
 
64b241d
 
5d657f5
 
64b241d
5d657f5
64b241d
d13afd7
5d657f5
 
d13afd7
5d657f5
a24294c
 
64b241d
a485d72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
import torch
from transformers import DalleBartTokenizer, DalleBartForConditionalGeneration
from PIL import Image
import io

# Load model and tokenizer
model_id = "dalle-mini/dalle-mini"  # Example model id; adjust if needed
model = DalleBartForConditionalGeneration.from_pretrained(model_id)
tokenizer = DalleBartTokenizer.from_pretrained(model_id)

# Function to generate image
def generate_image(prompt, num_inference_steps=50):
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate images
    with torch.no_grad():
        outputs = model.generate(**inputs, num_beams=num_inference_steps)
    
    # Convert tensor to PIL image
    image = Image.fromarray(outputs[0].cpu().numpy().astype('uint8'))
    
    return image

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Text to Image Generation")

    with gr.Row():
        prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
        num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps")

    with gr.Row():
        generate_button = gr.Button("Generate Image")

    result = gr.Image(label="Generated Image")

    # Connect the function to the button
    generate_button.click(
        fn=generate_image,
        inputs=[prompt, num_inference_steps],
        outputs=result
    )

# Launch the Gradio app
demo.launch()