Spaces:
Runtime error
Runtime error
File size: 1,415 Bytes
a24294c d13afd7 7b475df d13afd7 7b475df d13afd7 7b475df d13afd7 7b475df d13afd7 7b475df d13afd7 7b475df d13afd7 a24294c 64b241d 5d657f5 64b241d 5d657f5 64b241d 5d657f5 64b241d 5d657f5 64b241d d13afd7 5d657f5 d13afd7 5d657f5 a24294c 64b241d a485d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import torch
from transformers import DalleBartTokenizer, DalleBartForConditionalGeneration
from PIL import Image
import io
# Load model and tokenizer
model_id = "dalle-mini/dalle-mini" # Example model id; adjust if needed
model = DalleBartForConditionalGeneration.from_pretrained(model_id)
tokenizer = DalleBartTokenizer.from_pretrained(model_id)
# Function to generate image
def generate_image(prompt, num_inference_steps=50):
inputs = tokenizer(prompt, return_tensors="pt")
# Generate images
with torch.no_grad():
outputs = model.generate(**inputs, num_beams=num_inference_steps)
# Convert tensor to PIL image
image = Image.fromarray(outputs[0].cpu().numpy().astype('uint8'))
return image
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Image Generation")
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps")
with gr.Row():
generate_button = gr.Button("Generate Image")
result = gr.Image(label="Generated Image")
# Connect the function to the button
generate_button.click(
fn=generate_image,
inputs=[prompt, num_inference_steps],
outputs=result
)
# Launch the Gradio app
demo.launch()
|