Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Define the Gradio interface
|
22 |
with gr.Blocks() as demo:
|
@@ -24,11 +28,6 @@ with gr.Blocks() as demo:
|
|
24 |
|
25 |
with gr.Row():
|
26 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
|
27 |
-
seed = gr.Slider(minimum=0, maximum=100000, step=1, value=0, label="Seed")
|
28 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
29 |
-
width = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Width")
|
30 |
-
height = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Height")
|
31 |
-
guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=3.5, label="Guidance Scale")
|
32 |
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps")
|
33 |
|
34 |
with gr.Row():
|
@@ -36,10 +35,10 @@ with gr.Blocks() as demo:
|
|
36 |
|
37 |
result = gr.Image(label="Generated Image")
|
38 |
|
39 |
-
#
|
40 |
generate_button.click(
|
41 |
fn=generate_image,
|
42 |
-
inputs=[prompt,
|
43 |
outputs=result
|
44 |
)
|
45 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DalleMini, DalleMiniProcessor
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load model and processor
|
7 |
+
model_id = "dalle-mini/dalle-mega"
|
8 |
+
model = DalleMini.from_pretrained(model_id)
|
9 |
+
processor = DalleMiniProcessor.from_pretrained(model_id)
|
10 |
+
|
11 |
+
# Function to generate image
|
12 |
+
def generate_image(prompt, num_inference_steps=50):
|
13 |
+
inputs = processor(prompt, return_tensors="pt")
|
14 |
+
|
15 |
+
# Generate images
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model.generate(**inputs, num_inference_steps=num_inference_steps)
|
18 |
+
|
19 |
+
# Convert to PIL image
|
20 |
+
image = processor.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
image = Image.open(io.BytesIO(image))
|
22 |
+
|
23 |
+
return image
|
24 |
|
25 |
# Define the Gradio interface
|
26 |
with gr.Blocks() as demo:
|
|
|
28 |
|
29 |
with gr.Row():
|
30 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
|
|
|
|
|
|
|
|
|
|
|
31 |
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps")
|
32 |
|
33 |
with gr.Row():
|
|
|
35 |
|
36 |
result = gr.Image(label="Generated Image")
|
37 |
|
38 |
+
# Connect the function to the button
|
39 |
generate_button.click(
|
40 |
fn=generate_image,
|
41 |
+
inputs=[prompt, num_inference_steps],
|
42 |
outputs=result
|
43 |
)
|
44 |
|