Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
import torch
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
12 |
-
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
13 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
14 |
-
torch.cuda.empty_cache()
|
15 |
-
|
16 |
-
MAX_SEED = np.iinfo(np.int32).max
|
17 |
-
MAX_IMAGE_SIZE = 2048
|
18 |
-
|
19 |
-
# Mock function to replace flux_pipe_call_that_returns_an_iterable_of_images
|
20 |
-
def mock_flux_pipe_call_that_returns_an_iterable_of_images(prompt, guidance_scale, num_inference_steps, width, height, generator, output_type, good_vae):
|
21 |
-
# Generate a placeholder image
|
22 |
-
image = Image.new('RGB', (width, height), color = 'red')
|
23 |
-
yield image
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
guidance_scale=guidance_scale,
|
37 |
-
num_inference_steps=num_inference_steps,
|
38 |
-
width=width,
|
39 |
-
height=height,
|
40 |
-
generator=generator,
|
41 |
-
output_type="pil",
|
42 |
-
good_vae=good_vae,
|
43 |
-
):
|
44 |
-
yield img, seed
|
45 |
-
|
46 |
-
examples = [
|
47 |
-
"a tiny astronaut hatching from an egg on the moon",
|
48 |
-
"a cat holding a sign that says hello world",
|
49 |
-
"an anime illustration of a wiener schnitzel",
|
50 |
-
]
|
51 |
-
|
52 |
-
css="""
|
53 |
-
#col-container {
|
54 |
-
margin: 0 auto;
|
55 |
-
max-width: 520px;
|
56 |
-
}
|
57 |
-
"""
|
58 |
-
|
59 |
-
with gr.Blocks(css=css) as demo:
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
64 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
65 |
-
""")
|
66 |
-
|
67 |
-
with gr.Row():
|
68 |
-
|
69 |
-
prompt = gr.Text(
|
70 |
-
label="Prompt",
|
71 |
-
show_label=False,
|
72 |
-
max_lines=1,
|
73 |
-
placeholder="Enter your prompt",
|
74 |
-
container=False,
|
75 |
-
)
|
76 |
-
|
77 |
-
run_button = gr.Button("Run", scale=0)
|
78 |
-
|
79 |
-
result = gr.Image(label="Result", show_label=False)
|
80 |
-
|
81 |
-
with gr.Accordion("Advanced Settings", open=False):
|
82 |
-
|
83 |
-
seed = gr.Slider(
|
84 |
-
label="Seed",
|
85 |
-
minimum=0,
|
86 |
-
maximum=MAX_SEED,
|
87 |
-
step=1,
|
88 |
-
value=0,
|
89 |
-
)
|
90 |
-
|
91 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
92 |
-
|
93 |
-
with gr.Row():
|
94 |
-
|
95 |
-
width = gr.Slider(
|
96 |
-
label="Width",
|
97 |
-
minimum=256,
|
98 |
-
maximum=MAX_IMAGE_SIZE,
|
99 |
-
step=32,
|
100 |
-
value=1024,
|
101 |
-
)
|
102 |
-
|
103 |
-
height = gr.Slider(
|
104 |
-
label="Height",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024,
|
109 |
-
)
|
110 |
-
|
111 |
-
with gr.Row():
|
112 |
-
|
113 |
-
guidance_scale = gr.Slider(
|
114 |
-
label="Guidance Scale",
|
115 |
-
minimum=1,
|
116 |
-
maximum=15,
|
117 |
-
step=0.1,
|
118 |
-
value=3.5,
|
119 |
-
)
|
120 |
-
|
121 |
-
num_inference_steps = gr.Slider(
|
122 |
-
label="Number of inference steps",
|
123 |
-
minimum=1,
|
124 |
-
maximum=50,
|
125 |
-
step=1,
|
126 |
-
value=28,
|
127 |
-
)
|
128 |
-
|
129 |
-
gr.Examples(
|
130 |
-
examples = examples,
|
131 |
-
fn = infer,
|
132 |
-
inputs = [prompt],
|
133 |
-
outputs = [result, seed],
|
134 |
-
cache_examples="lazy"
|
135 |
-
)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
|
|
144 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load the diffusion model
|
7 |
+
pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Set the model to the appropriate device
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
pipeline.to(device)
|
12 |
|
13 |
+
def generate_image(prompt, guidance_scale=7.5, num_inference_steps=50):
|
14 |
+
# Generate an image based on the prompt
|
15 |
+
with torch.no_grad():
|
16 |
+
# Generate images
|
17 |
+
images = pipeline(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images
|
18 |
|
19 |
+
# Assuming pipeline returns a list of images, just take the first one
|
20 |
+
img = images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Convert PIL image to format suitable for Gradio
|
23 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Set up Gradio interface
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("# Text to Image Generation")
|
28 |
+
|
29 |
+
with gr.Row():
|
30 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
|
31 |
+
guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=7.5, label="Guidance Scale")
|
32 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Inference Steps")
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
generate_button = gr.Button("Generate Image")
|
36 |
+
|
37 |
+
result = gr.Image(label="Generated Image")
|
38 |
+
|
39 |
+
# Connect the function to the button
|
40 |
+
generate_button.click(
|
41 |
+
fn=generate_image,
|
42 |
+
inputs=[prompt, guidance_scale, num_inference_steps],
|
43 |
+
outputs=result
|
44 |
)
|
45 |
|
46 |
+
# Launch the app
|
47 |
demo.launch()
|