My-AI-Projects commited on
Commit
7b475df
Β·
verified Β·
1 Parent(s): d13afd7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -1,24 +1,24 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import DalleMini, DalleMiniProcessor
4
  from PIL import Image
 
5
 
6
- # Load model and processor
7
- model_id = "dalle-mini/dalle-mega"
8
- model = DalleMini.from_pretrained(model_id)
9
- processor = DalleMiniProcessor.from_pretrained(model_id)
10
 
11
  # Function to generate image
12
  def generate_image(prompt, num_inference_steps=50):
13
- inputs = processor(prompt, return_tensors="pt")
14
 
15
  # Generate images
16
  with torch.no_grad():
17
- outputs = model.generate(**inputs, num_inference_steps=num_inference_steps)
18
 
19
- # Convert to PIL image
20
- image = processor.decode(outputs[0], skip_special_tokens=True)
21
- image = Image.open(io.BytesIO(image))
22
 
23
  return image
24
 
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import DalleBartTokenizer, DalleBartForConditionalGeneration
4
  from PIL import Image
5
+ import io
6
 
7
+ # Load model and tokenizer
8
+ model_id = "dalle-mini/dalle-mini" # Example model id; adjust if needed
9
+ model = DalleBartForConditionalGeneration.from_pretrained(model_id)
10
+ tokenizer = DalleBartTokenizer.from_pretrained(model_id)
11
 
12
  # Function to generate image
13
  def generate_image(prompt, num_inference_steps=50):
14
+ inputs = tokenizer(prompt, return_tensors="pt")
15
 
16
  # Generate images
17
  with torch.no_grad():
18
+ outputs = model.generate(**inputs, num_beams=num_inference_steps)
19
 
20
+ # Convert tensor to PIL image
21
+ image = Image.fromarray(outputs[0].cpu().numpy().astype('uint8'))
 
22
 
23
  return image
24