Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
-
# Load model and
|
7 |
-
model_id = "dalle-mini/dalle-
|
8 |
-
model =
|
9 |
-
|
10 |
|
11 |
# Function to generate image
|
12 |
def generate_image(prompt, num_inference_steps=50):
|
13 |
-
inputs =
|
14 |
|
15 |
# Generate images
|
16 |
with torch.no_grad():
|
17 |
-
outputs = model.generate(**inputs,
|
18 |
|
19 |
-
# Convert to PIL image
|
20 |
-
image =
|
21 |
-
image = Image.open(io.BytesIO(image))
|
22 |
|
23 |
return image
|
24 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import DalleBartTokenizer, DalleBartForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
+
import io
|
6 |
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_id = "dalle-mini/dalle-mini" # Example model id; adjust if needed
|
9 |
+
model = DalleBartForConditionalGeneration.from_pretrained(model_id)
|
10 |
+
tokenizer = DalleBartTokenizer.from_pretrained(model_id)
|
11 |
|
12 |
# Function to generate image
|
13 |
def generate_image(prompt, num_inference_steps=50):
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
|
16 |
# Generate images
|
17 |
with torch.no_grad():
|
18 |
+
outputs = model.generate(**inputs, num_beams=num_inference_steps)
|
19 |
|
20 |
+
# Convert tensor to PIL image
|
21 |
+
image = Image.fromarray(outputs[0].cpu().numpy().astype('uint8'))
|
|
|
22 |
|
23 |
return image
|
24 |
|