File size: 1,225 Bytes
b47054b
1a82ef7
 
 
b47054b
72d6ac4
7c5454f
1a82ef7
 
 
72d6ac4
6f65c39
a2cdd68
1a82ef7
a2cdd68
 
 
 
 
 
1a82ef7
a2cdd68
 
1a82ef7
 
 
72d6ac4
1a82ef7
 
a2cdd68
72d6ac4
1a82ef7
 
15f9770
1a82ef7
 
72d6ac4
1a82ef7
 
72d6ac4
1a82ef7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import load_dataset
import torch

# 加载 Whisper 模型和 processor
model_name = "openai/whisper-large-v3-turbo"
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name)

# 加载数据集 bigcode/the-stack

ds = load_dataset("CoIR-Retrieval/CodeSearchNet-php-queries-corpus")

def transcribe(audio_path):
    # 加载音频文件并转换为信号
    audio, sr = librosa.load(audio_path, sr=16000)
    input_values = processor(audio, return_tensors="pt", sampling_rate=16000).input_values

    # 模型推理
    with torch.no_grad():
        logits = model(input_values).logits

    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)
    
    # 返回转录结果
    return transcription[0]

    
# Gradio 界面
iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio( type="filepath"),
    outputs="text",
    title="Whisper Transcription for Developers",
    description="使用 Whisper 和 bigcode 数据集转录开发者相关术语。"
)

# 启动 Gradio 应用
iface.launch()