Update app.py
Browse files
app.py
CHANGED
|
@@ -3,33 +3,33 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
model_name = "openai/whisper-large-v3-turbo"
|
| 8 |
processor = WhisperProcessor.from_pretrained(model_name)
|
| 9 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
dataset = load_dataset("bigcode/the-stack", data_dir="data/html")
|
| 13 |
|
| 14 |
def transcribe(audio):
|
| 15 |
-
#
|
| 16 |
audio_input = processor(audio, return_tensors="pt").input_values
|
| 17 |
with torch.no_grad():
|
| 18 |
logits = model(audio_input).logits
|
| 19 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 20 |
transcription = processor.batch_decode(predicted_ids)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
return transcription[0]
|
| 24 |
|
| 25 |
-
# Gradio
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=transcribe,
|
| 28 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 29 |
outputs="text",
|
| 30 |
title="Whisper Transcription for Developers",
|
| 31 |
-
description="
|
| 32 |
)
|
| 33 |
|
| 34 |
-
#
|
| 35 |
iface.launch()
|
|
|
|
| 3 |
from datasets import load_dataset
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# 加载 Whisper 模型和 processor
|
| 7 |
model_name = "openai/whisper-large-v3-turbo"
|
| 8 |
processor = WhisperProcessor.from_pretrained(model_name)
|
| 9 |
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
| 10 |
|
| 11 |
+
# 加载数据集 bigcode/the-stack
|
| 12 |
+
dataset = load_dataset("bigcode/the-stack", data_dir="data/html", split="train")
|
| 13 |
|
| 14 |
def transcribe(audio):
|
| 15 |
+
# 处理音频进行转录
|
| 16 |
audio_input = processor(audio, return_tensors="pt").input_values
|
| 17 |
with torch.no_grad():
|
| 18 |
logits = model(audio_input).logits
|
| 19 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 20 |
transcription = processor.batch_decode(predicted_ids)
|
| 21 |
|
| 22 |
+
# 返回转录结果
|
| 23 |
return transcription[0]
|
| 24 |
|
| 25 |
+
# Gradio 界面
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=transcribe,
|
| 28 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 29 |
outputs="text",
|
| 30 |
title="Whisper Transcription for Developers",
|
| 31 |
+
description="使用 Whisper 和 bigcode 数据集转录开发者相关术语。"
|
| 32 |
)
|
| 33 |
|
| 34 |
+
# 启动 Gradio 应用
|
| 35 |
iface.launch()
|