MeBai commited on
Commit
1a82ef7
·
verified ·
1 Parent(s): b47054b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -1
app.py CHANGED
@@ -1,3 +1,35 @@
1
  import gradio as gr
 
 
 
2
 
3
- gr.load("models/openai/whisper-large-v3-turbo").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
3
+ from datasets import load_dataset
4
+ import torch
5
 
6
+ # Load Whisper model and processor
7
+ model_name = "openai/whisper-large-v3-turbo"
8
+ processor = WhisperProcessor.from_pretrained(model_name)
9
+ model = WhisperForConditionalGeneration.from_pretrained(model_name)
10
+
11
+ # Load dataset (bigcode/the-stack)
12
+ dataset = load_dataset("bigcode/the-stack", data_dir="data/html")
13
+
14
+ def transcribe(audio):
15
+ # Process audio for transcription
16
+ audio_input = processor(audio, return_tensors="pt").input_values
17
+ with torch.no_grad():
18
+ logits = model(audio_input).logits
19
+ predicted_ids = torch.argmax(logits, dim=-1)
20
+ transcription = processor.batch_decode(predicted_ids)
21
+
22
+ # Return the transcription
23
+ return transcription[0]
24
+
25
+ # Gradio interface
26
+ iface = gr.Interface(
27
+ fn=transcribe,
28
+ inputs=gr.Audio(source="microphone", type="filepath"),
29
+ outputs="text",
30
+ title="Whisper Transcription for Developers",
31
+ description="Transcribe developer-related terms using Whisper and bigcode dataset for contextual support."
32
+ )
33
+
34
+ # Launch the Gradio app
35
+ iface.launch()