Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,35 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
+
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load Whisper model and processor
|
7 |
+
model_name = "openai/whisper-large-v3-turbo"
|
8 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
9 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Load dataset (bigcode/the-stack)
|
12 |
+
dataset = load_dataset("bigcode/the-stack", data_dir="data/html")
|
13 |
+
|
14 |
+
def transcribe(audio):
|
15 |
+
# Process audio for transcription
|
16 |
+
audio_input = processor(audio, return_tensors="pt").input_values
|
17 |
+
with torch.no_grad():
|
18 |
+
logits = model(audio_input).logits
|
19 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
20 |
+
transcription = processor.batch_decode(predicted_ids)
|
21 |
+
|
22 |
+
# Return the transcription
|
23 |
+
return transcription[0]
|
24 |
+
|
25 |
+
# Gradio interface
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=transcribe,
|
28 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
29 |
+
outputs="text",
|
30 |
+
title="Whisper Transcription for Developers",
|
31 |
+
description="Transcribe developer-related terms using Whisper and bigcode dataset for contextual support."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the Gradio app
|
35 |
+
iface.launch()
|