Update app.py
Browse files
app.py
CHANGED
@@ -10,19 +10,24 @@ model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
|
10 |
|
11 |
# 加载数据集 bigcode/the-stack
|
12 |
|
13 |
-
|
14 |
|
15 |
-
def transcribe(
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
18 |
with torch.no_grad():
|
19 |
-
logits = model(
|
|
|
20 |
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
transcription = processor.batch_decode(predicted_ids)
|
22 |
|
23 |
# 返回转录结果
|
24 |
return transcription[0]
|
25 |
|
|
|
26 |
# Gradio 界面
|
27 |
iface = gr.Interface(
|
28 |
fn=transcribe,
|
|
|
10 |
|
11 |
# 加载数据集 bigcode/the-stack
|
12 |
|
13 |
+
ds = load_dataset("CoIR-Retrieval/CodeSearchNet-php-queries-corpus")
|
14 |
|
15 |
+
def transcribe(audio_path):
|
16 |
+
# 加载音频文件并转换为信号
|
17 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
18 |
+
input_values = processor(audio, return_tensors="pt", sampling_rate=16000).input_values
|
19 |
+
|
20 |
+
# 模型推理
|
21 |
with torch.no_grad():
|
22 |
+
logits = model(input_values).logits
|
23 |
+
|
24 |
predicted_ids = torch.argmax(logits, dim=-1)
|
25 |
transcription = processor.batch_decode(predicted_ids)
|
26 |
|
27 |
# 返回转录结果
|
28 |
return transcription[0]
|
29 |
|
30 |
+
|
31 |
# Gradio 界面
|
32 |
iface = gr.Interface(
|
33 |
fn=transcribe,
|