File size: 2,847 Bytes
38f8736
6c05acd
317cf3c
 
0deea66
652437c
0deea66
 
 
d1ca29f
80320f9
0deea66
 
 
d1ca29f
80320f9
0deea66
 
80320f9
0deea66
 
 
 
 
 
 
80320f9
0deea66
 
 
 
 
 
0cea8e5
 
3818f5a
0cea8e5
d1ca29f
 
3818f5a
0cea8e5
 
 
 
b474dc5
0cea8e5
 
 
b474dc5
0cea8e5
 
56adc9e
3d3f8f8
0cea8e5
 
 
3d3f8f8
3818f5a
0cea8e5
3d3f8f8
0cea8e5
 
ed1dd60
0cea8e5
 
 
 
 
 
3818f5a
 
0cea8e5
ed1dd60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import zipfile
import os

# Percorsi per il primo file ZIP
zip_path_m = "faiss_manual_index.zip"  # File ZIP per l'indice manuale
extraction_dir_m = "./extracted_models/faiss_manual_index"  # Sottocartella per estrazione manuale
testm_dir = extraction_dir_m  # Cartella finale

# Percorsi per il secondo file ZIP
zip_path_p = "faiss_problems_index.zip"  # File ZIP per l'indice problemi
extraction_dir_p = "./extracted_models/faiss_problems_index"  # Sottocartella per estrazione problemi
testp_dir = extraction_dir_p  # Cartella finale

# Estrai il primo file ZIP se non esiste già
if not os.path.exists(os.path.join(testm_dir, "index.faiss")):
    with zipfile.ZipFile(zip_path_m, 'r') as zip_ref:
        zip_ref.extractall(extraction_dir_m)
    print(f"Indice Manuale estratto correttamente nella cartella {extraction_dir_m}")
else:
    print(f"Indice Manuale già presente in {testm_dir}")

# Estrai il secondo file ZIP se non esiste già
if not os.path.exists(os.path.join(testp_dir, "index.faiss")):
    with zipfile.ZipFile(zip_path_p, 'r') as zip_ref:
        zip_ref.extractall(extraction_dir_p)
    print(f"Indice Problemi estratto correttamente nella cartella {extraction_dir_p}")
else:
    print(f"Indice Problemi già presente in {testp_dir}")

# Carica il modello di embedding
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/LaBSE")

# Carica i vectorstore FAISS salvati
manual_vectorstore = FAISS.load_local(testm_dir, embedding_model, allow_dangerous_deserialization=True)
problems_vectorstore = FAISS.load_local(testp_dir, embedding_model, allow_dangerous_deserialization=True)

def search_query(query):
    # Cerca nei manuali
    manual_results = manual_vectorstore.similarity_search(query, k=2)
    manual_output = "\n\n".join([doc.page_content for doc in manual_results])

    # Cerca nei problemi
    problems_results = problems_vectorstore.similarity_search(query, k=2)
    problems_output = "\n\n".join([doc.page_content for doc in problems_results])

    # Restituisce i risultati come output diviso
    return manual_output, problems_output
    
examples = [
    ["How to change the knife?"],
    ["What are the safety precautions for using the machine?"],
    ["How can I get help with the machine?"]
]

# Interfaccia Gradio
iface = gr.Interface(
    fn=search_query,
   inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
    outputs=[
    gr.Textbox(label="Manual Results"),
    gr.Textbox(label="Issues Results")
],
    examples=examples, 
     title="Manual Querying System",
    description="Enter a question to get relevant information extracted from the manual and the most common related issues."
)

# Avvia l'app
iface.launch()