Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -65,49 +65,92 @@ sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo
|
|
65 |
# Crea gli embedding per il manuale
|
66 |
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
|
67 |
|
68 |
-
#
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
query_embedding = model.encode([query])
|
71 |
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
72 |
|
73 |
-
# Filtra i risultati in base alla similitudine
|
74 |
-
threshold = 0.2
|
75 |
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
|
76 |
-
|
77 |
-
# Ordina i risultati per similitudine
|
78 |
filtered_results.sort(key=lambda x: x[1], reverse=True)
|
79 |
|
80 |
-
|
81 |
-
|
|
|
82 |
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
|
83 |
-
|
84 |
-
doc = nlp(" ".join(relevant_sentences))
|
85 |
-
|
86 |
-
grouped_results = [sent.text for sent in doc.sents]
|
87 |
-
# Pulizia
|
88 |
-
cleaned_results = [text.replace("\n", " ") for text in grouped_results] # Rimuove gli a capo
|
89 |
-
final_output = " ".join(cleaned_results) # Combina tutte le frasi in un unico testo
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
examples = [
|
95 |
["irresponsible use of the machine?"],
|
96 |
-
["If I have a problem how can I get help?
|
97 |
["precautions when using the cutting machine"],
|
98 |
-
["How do I
|
99 |
-
|
|
|
100 |
]
|
101 |
|
102 |
-
# Interfaccia Gradio
|
103 |
iface = gr.Interface(
|
104 |
-
fn=find_relevant_sentences,
|
105 |
-
inputs=gr.Textbox(label="Insert your query"),
|
106 |
-
outputs=gr.Textbox(label="Relevant sentences"),
|
107 |
-
examples=examples,
|
108 |
title="Manual Querying System",
|
109 |
-
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
|
110 |
)
|
111 |
|
112 |
-
# Avvia l'app Gradio
|
113 |
iface.launch()
|
|
|
65 |
# Crea gli embedding per il manuale
|
66 |
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
|
67 |
|
68 |
+
# Percorso della cartella delle immagini
|
69 |
+
image_folder = "./images"
|
70 |
+
|
71 |
+
def extract_figure_numbers(text):
|
72 |
+
"""Estrae tutti i numeri delle figure da una frase."""
|
73 |
+
matches = re.findall(r"\(Figure (\d+)\)", text, re.IGNORECASE)
|
74 |
+
if matches:
|
75 |
+
return matches # Restituisce una lista di numeri di figure
|
76 |
+
return []
|
77 |
+
|
78 |
+
|
79 |
+
def generate_figure_mapping(folder):
|
80 |
+
"""Genera la mappatura delle figure dal nome dei file immagini."""
|
81 |
+
mapping = {}
|
82 |
+
for file_name in os.listdir(folder):
|
83 |
+
if file_name.lower().endswith((".jpg", ".png", ".jpeg")):
|
84 |
+
figure_reference = file_name.split(".")[0].replace("_", " ")
|
85 |
+
mapping[figure_reference] = file_name
|
86 |
+
return mapping
|
87 |
+
|
88 |
+
figure_mapping = generate_figure_mapping(image_folder)
|
89 |
+
#print("Generated figure mapping:", figure_mapping)
|
90 |
+
|
91 |
+
def format_sentences(sentences):
|
92 |
+
"""
|
93 |
+
Converte la lista in una stringa, sostituendo i delimitatori '|' con un a capo senza aggiungere spazi extra.
|
94 |
+
Interrompe il processo se trova '.end'.
|
95 |
+
"""
|
96 |
+
# Uniamo la lista in una singola stringa
|
97 |
+
sentences_str = " ".join(sentences)
|
98 |
+
|
99 |
+
# Interrompiamo al primo '.end'
|
100 |
+
if ".end" in sentences_str:
|
101 |
+
sentences_str = sentences_str.split(".end")[0]
|
102 |
+
|
103 |
+
# Sostituiamo il delimitatore '|' con un a capo
|
104 |
+
formatted_response = sentences_str.replace(" |", "\n").replace("|", "\n")
|
105 |
+
|
106 |
+
return formatted_response
|
107 |
+
|
108 |
+
def find_relevant_sentences(query, threshold=0.2, top_n=6):
|
109 |
+
"""Trova le frasi più rilevanti e le immagini collegate."""
|
110 |
+
global sentences
|
111 |
query_embedding = model.encode([query])
|
112 |
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
113 |
|
|
|
|
|
114 |
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
|
|
|
|
|
115 |
filtered_results.sort(key=lambda x: x[1], reverse=True)
|
116 |
|
117 |
+
if not filtered_results:
|
118 |
+
return "**RESPONSE:**\nNo relevant sentences found for your query.", None
|
119 |
+
|
120 |
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
|
121 |
+
relevant_images = set() # Usa un set per evitare duplicati
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
for sent in relevant_sentences:
|
124 |
+
figure_numbers = extract_figure_numbers(sent) # Restituisce una lista di figure
|
125 |
+
for figure_number in figure_numbers:
|
126 |
+
if figure_number in figure_mapping:
|
127 |
+
image_path = os.path.join(image_folder, figure_mapping[figure_number])
|
128 |
+
if os.path.exists(image_path):
|
129 |
+
relevant_images.add(image_path) # Aggiunge al set
|
130 |
|
131 |
+
# Formatta le frasi senza categorizzazione
|
132 |
+
formatted_response = "****\n" + format_sentences(relevant_sentences)
|
133 |
+
return formatted_response, list(relevant_images) # Converte il set in lista
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
# Interfaccia Gradio
|
138 |
examples = [
|
139 |
["irresponsible use of the machine?"],
|
140 |
+
["If I have a problem how can I get help?"],
|
141 |
["precautions when using the cutting machine"],
|
142 |
+
["How do I DRILL BIT REPLACEMENT ?"],
|
143 |
+
["instructions for changing the knife"],
|
144 |
+
["lubrication for the knife holder cylinder"]
|
145 |
]
|
146 |
|
|
|
147 |
iface = gr.Interface(
|
148 |
+
fn=find_relevant_sentences,
|
149 |
+
inputs=gr.Textbox(label="Insert your query"),
|
150 |
+
outputs=[gr.Textbox(label="Relevant sentences"), gr.Gallery(label="Relevant figures")],
|
151 |
+
examples=examples,
|
152 |
title="Manual Querying System",
|
153 |
+
description="Enter a question about the machine, and this tool will find the most relevant sentences and associated figures from the manual.",
|
154 |
)
|
155 |
|
|
|
156 |
iface.launch()
|