Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,41 +7,90 @@ from sklearn.metrics.pairwise import cosine_similarity
|
|
7 |
import numpy as np
|
8 |
import zipfile
|
9 |
|
10 |
-
import shutil
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
return "Errore: Il file caricato non è uno ZIP valido."
|
16 |
|
17 |
-
# Percorso temporaneo per l'estrazione
|
18 |
-
extraction_dir = "./extracted_files"
|
19 |
-
os.makedirs(extraction_dir, exist_ok=True)
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
zip_ref.extractall(extraction_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
for f in files:
|
29 |
-
source_path = os.path.join(root, f)
|
30 |
-
dest_path = os.path.join(project_dir, f)
|
31 |
-
shutil.move(source_path, dest_path)
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Interfaccia Gradio
|
36 |
-
|
37 |
-
fn=
|
38 |
-
inputs=gr.
|
39 |
-
outputs="
|
40 |
-
|
41 |
-
|
|
|
42 |
)
|
43 |
|
44 |
-
# Avvia l'
|
45 |
-
|
46 |
-
interface.launch()
|
47 |
-
|
|
|
7 |
import numpy as np
|
8 |
import zipfile
|
9 |
|
|
|
10 |
|
11 |
+
zip_path = "en_core_web_sm-3.0.0.zip" # Carica il file ZIP nella cartella del progetto
|
12 |
+
extraction_dir = "./extracted_models" # Scegli una sottocartella per l'estrazione
|
13 |
+
test_dir = "./extracted_models/en_core_web_sm-3.0.0" # Cartella dopo l'estrazione
|
|
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
+
|
17 |
+
# Verifica se la cartella esiste già
|
18 |
+
if not os.path.exists(test_dir):
|
19 |
+
# Se la cartella non esiste, decomprimi il file ZIP
|
20 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
21 |
zip_ref.extractall(extraction_dir)
|
22 |
+
print(f"Modello estratto correttamente nella cartella {extraction_dir}")
|
23 |
+
|
24 |
+
# Percorso della cartella estratta
|
25 |
+
model_path = os.path.join(extraction_dir, "en_core_web_sm-3.0.0") # Assicurati che sia corretto
|
26 |
+
|
27 |
+
# Carica il modello
|
28 |
+
nlp = spacy.load(model_path)
|
29 |
+
|
30 |
+
|
31 |
+
# Carica il modello SentenceTransformer
|
32 |
+
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu')
|
33 |
+
#model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-v4', device='cpu')
|
34 |
+
#model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device='cpu')
|
35 |
+
|
36 |
+
model = SentenceTransformer('sentence-transformers/all-distilroberta-v1', device='cpu')
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# Preprocessamento manuale (carica il manuale da un file o base di dati)
|
41 |
+
with open('testo.txt', 'r', encoding='utf-8') as file:
|
42 |
+
text = file.read()
|
43 |
|
44 |
+
# Tokenizza il testo in frasi usando SpaCy
|
45 |
+
doc = nlp(text)
|
46 |
+
sentences = [sent.text for sent in doc.sents] # Estrarre frasi dal testo
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Crea gli embedding per il manuale
|
49 |
+
embeddings = model.encode(sentences, batch_size=8, show_progress_bar=True)
|
50 |
+
|
51 |
+
# Funzione per ottenere le frasi più rilevanti
|
52 |
+
def find_relevant_sentences(query):
|
53 |
+
query_embedding = model.encode([query])
|
54 |
+
similarities = cosine_similarity(query_embedding, embeddings).flatten()
|
55 |
+
|
56 |
+
# Filtra i risultati in base alla similitudine
|
57 |
+
threshold = 0.2
|
58 |
+
filtered_results = [(idx, sim) for idx, sim in enumerate(similarities) if sim >= threshold]
|
59 |
+
|
60 |
+
# Ordina i risultati per similitudine
|
61 |
+
filtered_results.sort(key=lambda x: x[1], reverse=True)
|
62 |
+
|
63 |
+
# Ottieni le frasi più rilevanti
|
64 |
+
top_n = 5
|
65 |
+
relevant_sentences = [sentences[idx] for idx, _ in filtered_results[:top_n]]
|
66 |
+
|
67 |
+
doc = nlp(" ".join(relevant_sentences))
|
68 |
+
|
69 |
+
grouped_results = [sent.text for sent in doc.sents]
|
70 |
+
# Pulizia
|
71 |
+
cleaned_results = [text.replace("\n", " ") for text in grouped_results] # Rimuove gli a capo
|
72 |
+
final_output = " ".join(cleaned_results) # Combina tutte le frasi in un unico testo
|
73 |
+
|
74 |
+
|
75 |
+
return grouped_results
|
76 |
+
|
77 |
+
examples = [
|
78 |
+
["irresponsible use of the machine?"],
|
79 |
+
["If I have a problem how can I get help? "],
|
80 |
+
["precautions when using the cutting machine"],
|
81 |
+
["How do I change the knife of the cutting machine?"],
|
82 |
+
|
83 |
+
]
|
84 |
|
85 |
# Interfaccia Gradio
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=find_relevant_sentences,
|
88 |
+
inputs=gr.Textbox(label="Insert your query"),
|
89 |
+
outputs=gr.Textbox(label="Relevant sentences"),
|
90 |
+
examples=examples,
|
91 |
+
title="Manual Querying System",
|
92 |
+
description="Enter a question about the machine, and this tool will find the most relevant sentences from the manual."
|
93 |
)
|
94 |
|
95 |
+
# Avvia l'app Gradio
|
96 |
+
iface.launch()
|
|
|
|