File size: 11,723 Bytes
47fab0c
b631b54
 
 
 
 
47fab0c
 
140c6e4
30c8cdc
140c6e4
 
02c3790
47fab0c
02c3790
ffcc74e
02c3790
3f0776a
02c3790
140c6e4
 
 
16319e4
02c3790
 
30c8cdc
 
2979863
02c3790
 
 
 
 
 
47fab0c
02c3790
 
 
 
 
 
 
 
 
 
cc5af1f
b631b54
02c3790
9847261
02c3790
9847261
140c6e4
02c3790
 
 
 
 
 
 
 
30c8cdc
47fab0c
02c3790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcc74e
02c3790
 
 
 
 
 
 
 
 
 
 
 
 
 
db5d397
47fab0c
140c6e4
02c3790
140c6e4
b631b54
140c6e4
98932bb
140c6e4
 
98932bb
140c6e4
 
 
 
 
02c3790
140c6e4
 
 
 
 
 
 
 
 
 
 
98932bb
140c6e4
 
98932bb
 
 
140c6e4
 
 
 
 
98932bb
140c6e4
 
02c3790
140c6e4
 
98932bb
 
140c6e4
98932bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140c6e4
 
 
98932bb
 
 
 
 
 
 
 
 
 
140c6e4
 
 
98932bb
 
 
b631b54
98932bb
 
 
140c6e4
 
b631b54
 
 
 
 
 
 
 
 
 
 
140c6e4
98932bb
 
 
140c6e4
 
98932bb
 
 
140c6e4
 
 
 
 
98932bb
 
140c6e4
 
 
 
98932bb
b631b54
140c6e4
 
9847261
140c6e4
 
b631b54
 
 
140c6e4
 
cc5af1f
140c6e4
 
02c3790
140c6e4
 
98932bb
140c6e4
98932bb
140c6e4
 
98932bb
b631b54
98932bb
 
 
140c6e4
 
b631b54
 
 
 
 
140c6e4
b631b54
140c6e4
b631b54
140c6e4
b631b54
02c3790
 
140c6e4
02c3790
98932bb
b631b54
02c3790
 
140c6e4
 
b631b54
02c3790
 
 
 
140c6e4
 
b631b54
 
98932bb
 
140c6e4
 
 
98932bb
 
 
13bfa03
140c6e4
 
02c3790
140c6e4
 
 
9847261
140c6e4
02c3790
140c6e4
 
9847261
98932bb
 
 
 
 
140c6e4
 
b631b54
 
 
 
 
 
 
98932bb
b631b54
 
13bfa03
b631b54
140c6e4
 
 
47fab0c
cc5af1f
02c3790
 
b631b54
02c3790
 
140c6e4
02c3790
98932bb
 
 
 
 
 
 
02c3790
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
Phramer AI - Main Gradio Interface
By Pariente AI, for MIA TV Series

Multimodal tool that reads images and turns them into refined, photo-realistic prompts.
Ready for Midjourney, Flux or any generative engine.
"""

import gradio as gr
import logging
import warnings
import os
from typing import Tuple

from config import APP_CONFIG, ENVIRONMENT
from processor import process_image_simple, phramer_optimizer
from utils import setup_logging, clean_memory

# Configure environment
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Setup logging
setup_logging(ENVIRONMENT["log_level"])
logger = logging.getLogger(__name__)


def process_image_interface(image) -> Tuple[str, str, str]:
    """
    Main interface function for image processing
    
    Args:
        image: Input image from Gradio interface
        
    Returns:
        Tuple of (prompt, analysis_report, score_html)
    """
    try:
        if image is None:
            return (
                "Please upload an image to analyze",
                "No image provided for analysis.",
                '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
            )
        
        logger.info("Processing image through Phramer AI interface")
        prompt, report, score_html = process_image_simple(image)
        
        return prompt, report, score_html
        
    except Exception as e:
        logger.error(f"Interface processing error: {e}", exc_info=True)
        error_msg = f"Processing failed: {str(e)}"
        
        return (
            "❌ Processing failed",
            f"**Error:** {error_msg}\n\nPlease try again with a different image.",
            '<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>'
        )


def clear_interface() -> Tuple[str, str, str]:
    """Clear all interface outputs and free memory"""
    clean_memory()
    logger.info("Interface cleared")
    
    return (
        "",
        "",
        '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
    )


def get_stats_info() -> str:
    """Get current processing statistics"""
    try:
        stats = phramer_optimizer.get_enhanced_stats()
        
        stats_text = f"""**Processing Statistics:**
• **Total Images:** {stats['total_processed']}
• **Successful:** {stats['successful_analyses']}
• **Failed:** {stats['failed_analyses']}
• **Success Rate:** {stats['success_rate']:.1%}
• **Average Time:** {stats['average_processing_time']:.1f}s
• **Device:** {stats['device_info']['device'].upper()}
"""
        return stats_text
        
    except Exception as e:
        logger.error(f"Stats retrieval error: {e}")
        return "Statistics unavailable"


def create_interface():
    """Create the main Gradio interface"""
    
    # Updated CSS with Phramer AI branding
    css = """
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
    
    .gradio-container {
        max-width: 1600px !important;
        margin: 0 auto !important;
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
        background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
    }
    
    /* Text visibility fixes */
    .markdown-text, .markdown-text *, 
    .prose, .prose *,
    .gr-markdown, .gr-markdown *,
    div[class*="markdown"], div[class*="markdown"] * {
        color: #1f2937 !important;
    }
    
    .markdown-text h1, .markdown-text h2, .markdown-text h3, 
    .prose h1, .prose h2, .prose h3,
    .gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
        color: #111827 !important;
        font-weight: 700 !important;
    }
    
    .markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol,
    .prose p, .prose li, .prose ul, .prose ol,
    .gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol {
        color: #374151 !important;
    }
    
    .markdown-text strong, .prose strong, .gr-markdown strong {
        color: #111827 !important;
        font-weight: 700 !important;
    }
    
    /* Header styling */
    .main-header {
        text-align: center;
        padding: 3rem 0 4rem 0;
        background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
        color: white;
        margin: -2rem -2rem 3rem -2rem;
        border-radius: 0 0 32px 32px;
        box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
        position: relative;
        overflow: hidden;
    }
    
    .main-header::before {
        content: '';
        position: absolute;
        top: 0;
        left: 0;
        right: 0;
        bottom: 0;
        background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
        z-index: 1;
    }
    
    .main-title {
        font-size: 4rem !important;
        font-weight: 900 !important;
        margin: 0 0 1rem 0 !important;
        letter-spacing: -0.05em !important;
        background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        background-clip: text;
        position: relative;
        z-index: 2;
    }
    
    .subtitle {
        font-size: 1.5rem !important;
        font-weight: 500 !important;
        opacity: 0.95 !important;
        margin: 0 0 0.5rem 0 !important;
        position: relative;
        z-index: 2;
        color: #ffffff !important;
    }
    
    .tagline {
        font-size: 1.1rem !important;
        font-weight: 400 !important;
        opacity: 0.85 !important;
        margin: 0 !important;
        position: relative;
        z-index: 2;
        color: #e5e7eb !important;
        font-style: italic;
    }
    
    .prompt-output {
        font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
        font-size: 15px !important;
        line-height: 1.8 !important;
        background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
        border: 2px solid #e2e8f0 !important;
        border-radius: 20px !important;
        padding: 2.5rem !important;
        box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
        transition: all 0.3s ease !important;
        color: #1f2937 !important;
    }
    
    .prompt-output:hover {
        box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
        transform: translateY(-2px) !important;
    }
    """
    
    with gr.Blocks(
        theme=gr.themes.Soft(),
        title="Phramer AI",
        css=css
    ) as interface:
        
        gr.HTML("""
        <div class="main-header">
            <div class="main-title">Phramer AI</div>
            <div class="subtitle">By Pariente AI, for MIA TV Series</div>
            <div class="tagline">Multimodal tool that reads images and turns them into refined, photo-realistic prompts</div>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("## Image Analysis")
                
                image_input = gr.Image(
                    label="Upload image for analysis",
                    type="pil",
                    height=500
                )
                
                analyze_btn = gr.Button(
                    "🔍 Generate Prompt",
                    variant="primary",
                    size="lg"
                )
                
                gr.Markdown("""
                ### How Phramer AI Works:
                
                **1. Deep Analysis:** Custom Bagel architecture analyzes your image for semantic-visual understanding.
                
                **2. Knowledge Enhancement:** Applies curated photographic knowledge base with camera settings and composition principles.
                
                **3. Prompt Generation:** Creates structured prompts with technical details, mood, and style specifications.
                
                **4. Multi-Engine Ready:** Optimized for Flux, Midjourney, and other diffusion platforms.
                
                **Perfect for:** Cinematic storyboards, photorealistic scenes, visual concept exploration.
                
                **Supported formats:** JPG, PNG, WebP up to 1024px
                """)
                
                # Statistics
                with gr.Accordion("📊 Processing Statistics", open=False):
                    stats_output = gr.Markdown(value="No processing completed yet.")
                    refresh_stats_btn = gr.Button("Refresh Stats", size="sm")
            
            with gr.Column(scale=1):
                gr.Markdown("## Generated Prompt")
                
                score_output = gr.HTML(
                    value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
                )
                
                prompt_output = gr.Textbox(
                    label="🎯 Photo-Realistic Prompt",
                    placeholder="Upload an image to generate a refined prompt ready for any generative engine...",
                    lines=12,
                    max_lines=20,
                    show_copy_button=True
                )
                
                info_output = gr.Markdown(value="")
                
                clear_btn = gr.Button("🗑️ Clear Analysis", size="sm")
        
        # Event handlers
        analyze_btn.click(
            fn=process_image_interface,
            inputs=[image_input],
            outputs=[prompt_output, info_output, score_output]
        )
        
        clear_btn.click(
            fn=clear_interface,
            outputs=[prompt_output, info_output, score_output]
        )
        
        refresh_stats_btn.click(
            fn=get_stats_info,
            outputs=stats_output
        )
        
        gr.Markdown("""
        ---
        ### About Phramer AI
        
        **Phramer AI** is an advanced multimodal system developed by **Pariente AI** for the **MIA TV Series** creative pipeline.
        
        This tool bridges the gap between image understanding and generative prompting, analyzing uploaded images through 
        a custom Bagel architecture and enhancing them with professional photographic knowledge to create detailed, 
        structured prompts ready for Flux, Midjourney, or any diffusion-based platform.
        
        Whether creating cinematic storyboards, photorealistic scenes, or exploring visual concepts, Phramer AI delivers 
        refined prompts with camera settings, composition hints, mood specifications, and style guidance.
        
        **Pariente AI** • Advanced Multimodal AI Research & Development • **MIA TV Series**
        """)
    
    return interface


def main():
    """Main application entry point"""
    logger.info("Starting Phramer AI by Pariente AI")
    
    # Create and launch interface
    demo = create_interface()
    
    # Launch with proper configuration
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )


if __name__ == "__main__":
    main()