Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,723 Bytes
47fab0c b631b54 47fab0c 140c6e4 30c8cdc 140c6e4 02c3790 47fab0c 02c3790 ffcc74e 02c3790 3f0776a 02c3790 140c6e4 16319e4 02c3790 30c8cdc 2979863 02c3790 47fab0c 02c3790 cc5af1f b631b54 02c3790 9847261 02c3790 9847261 140c6e4 02c3790 30c8cdc 47fab0c 02c3790 ffcc74e 02c3790 db5d397 47fab0c 140c6e4 02c3790 140c6e4 b631b54 140c6e4 98932bb 140c6e4 98932bb 140c6e4 02c3790 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb 140c6e4 02c3790 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb b631b54 98932bb 140c6e4 b631b54 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb b631b54 140c6e4 9847261 140c6e4 b631b54 140c6e4 cc5af1f 140c6e4 02c3790 140c6e4 98932bb 140c6e4 98932bb 140c6e4 98932bb b631b54 98932bb 140c6e4 b631b54 140c6e4 b631b54 140c6e4 b631b54 140c6e4 b631b54 02c3790 140c6e4 02c3790 98932bb b631b54 02c3790 140c6e4 b631b54 02c3790 140c6e4 b631b54 98932bb 140c6e4 98932bb 13bfa03 140c6e4 02c3790 140c6e4 9847261 140c6e4 02c3790 140c6e4 9847261 98932bb 140c6e4 b631b54 98932bb b631b54 13bfa03 b631b54 140c6e4 47fab0c cc5af1f 02c3790 b631b54 02c3790 140c6e4 02c3790 98932bb 02c3790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
"""
Phramer AI - Main Gradio Interface
By Pariente AI, for MIA TV Series
Multimodal tool that reads images and turns them into refined, photo-realistic prompts.
Ready for Midjourney, Flux or any generative engine.
"""
import gradio as gr
import logging
import warnings
import os
from typing import Tuple
from config import APP_CONFIG, ENVIRONMENT
from processor import process_image_simple, phramer_optimizer
from utils import setup_logging, clean_memory
# Configure environment
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Setup logging
setup_logging(ENVIRONMENT["log_level"])
logger = logging.getLogger(__name__)
def process_image_interface(image) -> Tuple[str, str, str]:
"""
Main interface function for image processing
Args:
image: Input image from Gradio interface
Returns:
Tuple of (prompt, analysis_report, score_html)
"""
try:
if image is None:
return (
"Please upload an image to analyze",
"No image provided for analysis.",
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
logger.info("Processing image through Phramer AI interface")
prompt, report, score_html = process_image_simple(image)
return prompt, report, score_html
except Exception as e:
logger.error(f"Interface processing error: {e}", exc_info=True)
error_msg = f"Processing failed: {str(e)}"
return (
"❌ Processing failed",
f"**Error:** {error_msg}\n\nPlease try again with a different image.",
'<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>'
)
def clear_interface() -> Tuple[str, str, str]:
"""Clear all interface outputs and free memory"""
clean_memory()
logger.info("Interface cleared")
return (
"",
"",
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
def get_stats_info() -> str:
"""Get current processing statistics"""
try:
stats = phramer_optimizer.get_enhanced_stats()
stats_text = f"""**Processing Statistics:**
• **Total Images:** {stats['total_processed']}
• **Successful:** {stats['successful_analyses']}
• **Failed:** {stats['failed_analyses']}
• **Success Rate:** {stats['success_rate']:.1%}
• **Average Time:** {stats['average_processing_time']:.1f}s
• **Device:** {stats['device_info']['device'].upper()}
"""
return stats_text
except Exception as e:
logger.error(f"Stats retrieval error: {e}")
return "Statistics unavailable"
def create_interface():
"""Create the main Gradio interface"""
# Updated CSS with Phramer AI branding
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
.gradio-container {
max-width: 1600px !important;
margin: 0 auto !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
}
/* Text visibility fixes */
.markdown-text, .markdown-text *,
.prose, .prose *,
.gr-markdown, .gr-markdown *,
div[class*="markdown"], div[class*="markdown"] * {
color: #1f2937 !important;
}
.markdown-text h1, .markdown-text h2, .markdown-text h3,
.prose h1, .prose h2, .prose h3,
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
color: #111827 !important;
font-weight: 700 !important;
}
.markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol,
.prose p, .prose li, .prose ul, .prose ol,
.gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol {
color: #374151 !important;
}
.markdown-text strong, .prose strong, .gr-markdown strong {
color: #111827 !important;
font-weight: 700 !important;
}
/* Header styling */
.main-header {
text-align: center;
padding: 3rem 0 4rem 0;
background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
color: white;
margin: -2rem -2rem 3rem -2rem;
border-radius: 0 0 32px 32px;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
position: relative;
overflow: hidden;
}
.main-header::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
z-index: 1;
}
.main-title {
font-size: 4rem !important;
font-weight: 900 !important;
margin: 0 0 1rem 0 !important;
letter-spacing: -0.05em !important;
background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
position: relative;
z-index: 2;
}
.subtitle {
font-size: 1.5rem !important;
font-weight: 500 !important;
opacity: 0.95 !important;
margin: 0 0 0.5rem 0 !important;
position: relative;
z-index: 2;
color: #ffffff !important;
}
.tagline {
font-size: 1.1rem !important;
font-weight: 400 !important;
opacity: 0.85 !important;
margin: 0 !important;
position: relative;
z-index: 2;
color: #e5e7eb !important;
font-style: italic;
}
.prompt-output {
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
font-size: 15px !important;
line-height: 1.8 !important;
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
border: 2px solid #e2e8f0 !important;
border-radius: 20px !important;
padding: 2.5rem !important;
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
transition: all 0.3s ease !important;
color: #1f2937 !important;
}
.prompt-output:hover {
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
transform: translateY(-2px) !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(),
title="Phramer AI",
css=css
) as interface:
gr.HTML("""
<div class="main-header">
<div class="main-title">Phramer AI</div>
<div class="subtitle">By Pariente AI, for MIA TV Series</div>
<div class="tagline">Multimodal tool that reads images and turns them into refined, photo-realistic prompts</div>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Image Analysis")
image_input = gr.Image(
label="Upload image for analysis",
type="pil",
height=500
)
analyze_btn = gr.Button(
"🔍 Generate Prompt",
variant="primary",
size="lg"
)
gr.Markdown("""
### How Phramer AI Works:
**1. Deep Analysis:** Custom Bagel architecture analyzes your image for semantic-visual understanding.
**2. Knowledge Enhancement:** Applies curated photographic knowledge base with camera settings and composition principles.
**3. Prompt Generation:** Creates structured prompts with technical details, mood, and style specifications.
**4. Multi-Engine Ready:** Optimized for Flux, Midjourney, and other diffusion platforms.
**Perfect for:** Cinematic storyboards, photorealistic scenes, visual concept exploration.
**Supported formats:** JPG, PNG, WebP up to 1024px
""")
# Statistics
with gr.Accordion("📊 Processing Statistics", open=False):
stats_output = gr.Markdown(value="No processing completed yet.")
refresh_stats_btn = gr.Button("Refresh Stats", size="sm")
with gr.Column(scale=1):
gr.Markdown("## Generated Prompt")
score_output = gr.HTML(
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
)
prompt_output = gr.Textbox(
label="🎯 Photo-Realistic Prompt",
placeholder="Upload an image to generate a refined prompt ready for any generative engine...",
lines=12,
max_lines=20,
show_copy_button=True
)
info_output = gr.Markdown(value="")
clear_btn = gr.Button("🗑️ Clear Analysis", size="sm")
# Event handlers
analyze_btn.click(
fn=process_image_interface,
inputs=[image_input],
outputs=[prompt_output, info_output, score_output]
)
clear_btn.click(
fn=clear_interface,
outputs=[prompt_output, info_output, score_output]
)
refresh_stats_btn.click(
fn=get_stats_info,
outputs=stats_output
)
gr.Markdown("""
---
### About Phramer AI
**Phramer AI** is an advanced multimodal system developed by **Pariente AI** for the **MIA TV Series** creative pipeline.
This tool bridges the gap between image understanding and generative prompting, analyzing uploaded images through
a custom Bagel architecture and enhancing them with professional photographic knowledge to create detailed,
structured prompts ready for Flux, Midjourney, or any diffusion-based platform.
Whether creating cinematic storyboards, photorealistic scenes, or exploring visual concepts, Phramer AI delivers
refined prompts with camera settings, composition hints, mood specifications, and style guidance.
**Pariente AI** • Advanced Multimodal AI Research & Development • **MIA TV Series**
""")
return interface
def main():
"""Main application entry point"""
logger.info("Starting Phramer AI by Pariente AI")
# Create and launch interface
demo = create_interface()
# Launch with proper configuration
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)
if __name__ == "__main__":
main() |