Malaji71 commited on
Commit
140c6e4
·
verified ·
1 Parent(s): 51e1993

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +304 -288
app.py CHANGED
@@ -1,317 +1,333 @@
1
  """
2
- Ultra Supreme Optimizer - Main optimization engine for image analysis
3
- VERSIÓN MEJORADA - Usa el prompt completo de CLIP Interrogator
4
  """
5
 
6
- # IMPORTANT: spaces must be imported BEFORE torch or any CUDA-using library
7
- import spaces
8
  import gc
9
  import logging
10
- import re
11
- from datetime import datetime
12
- from typing import Tuple, Dict, Any, Optional
13
 
14
- import torch
15
- import numpy as np
16
- from PIL import Image
17
- from clip_interrogator import Config, Interrogator
18
 
19
- from analyzer import UltraSupremeAnalyzer
 
 
 
20
 
 
 
21
  logger = logging.getLogger(__name__)
22
 
 
 
23
 
24
- class UltraSupremeOptimizer:
25
- """Main optimizer class for ultra supreme image analysis"""
26
-
27
- def __init__(self):
28
- self.interrogator: Optional[Interrogator] = None
29
- self.analyzer = UltraSupremeAnalyzer()
30
- self.usage_count = 0
31
- self.device = self._get_device()
32
- self.is_initialized = False
33
-
34
- @staticmethod
35
- def _get_device() -> str:
36
- """Determine the best available device for computation"""
37
- if torch.cuda.is_available():
38
- return "cuda"
39
- elif torch.backends.mps.is_available():
40
- return "mps"
41
- else:
42
- return "cpu"
43
 
44
- def initialize_model(self) -> bool:
45
- """Initialize the CLIP interrogator model"""
46
- if self.is_initialized:
47
- return True
48
 
49
- try:
50
- config = Config(
51
- clip_model_name="ViT-L-14/openai",
52
- download_cache=True,
53
- chunk_size=2048,
54
- quiet=True,
55
- device=self.device
56
- )
57
-
58
- self.interrogator = Interrogator(config)
59
- self.is_initialized = True
60
-
61
- # Clean up memory after initialization
62
- if self.device == "cpu":
63
- gc.collect()
64
- else:
65
- torch.cuda.empty_cache()
66
-
67
- return True
68
-
69
- except Exception as e:
70
- logger.error(f"Initialization error: {e}")
71
- return False
72
-
73
- def optimize_image(self, image: Any) -> Optional[Image.Image]:
74
- """Optimize image for processing"""
75
- if image is None:
76
- return None
77
-
78
- try:
79
- # Convert to PIL Image if necessary
80
- if isinstance(image, np.ndarray):
81
- image = Image.fromarray(image)
82
- elif not isinstance(image, Image.Image):
83
- image = Image.open(image)
84
-
85
- # Convert to RGB if necessary
86
- if image.mode != 'RGB':
87
- image = image.convert('RGB')
88
-
89
- # Resize if too large
90
- max_size = 768 if self.device != "cpu" else 512
91
- if image.size[0] > max_size or image.size[1] > max_size:
92
- image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
93
-
94
- return image
95
-
96
- except Exception as e:
97
- logger.error(f"Image optimization error: {e}")
98
- return None
99
-
100
- def apply_flux_rules(self, base_prompt: str) -> str:
101
- """Aplica las reglas de Flux a un prompt base de CLIP Interrogator"""
102
-
103
- # Limpiar el prompt de elementos no deseados
104
- cleanup_patterns = [
105
- r',\s*trending on artstation',
106
- r',\s*trending on [^,]+',
107
- r',\s*\d+k\s*',
108
- r',\s*\d+k resolution',
109
- r',\s*artstation',
110
- r',\s*concept art',
111
- r',\s*digital art',
112
- r',\s*by greg rutkowski', # Remover artistas genéricos overused
113
- ]
114
 
115
- cleaned_prompt = base_prompt
116
- for pattern in cleanup_patterns:
117
- cleaned_prompt = re.sub(pattern, '', cleaned_prompt, flags=re.IGNORECASE)
118
-
119
- # Detectar el tipo de imagen para añadir configuración de cámara apropiada
120
- camera_config = ""
121
- if any(word in base_prompt.lower() for word in ['portrait', 'person', 'man', 'woman', 'face']):
122
- camera_config = ", Shot on Hasselblad X2D 100C, 90mm f/2.5 lens at f/2.8, professional portrait photography"
123
- elif any(word in base_prompt.lower() for word in ['landscape', 'mountain', 'nature', 'outdoor']):
124
- camera_config = ", Shot on Phase One XT, 40mm f/4 lens at f/8, epic landscape photography"
125
- elif any(word in base_prompt.lower() for word in ['street', 'urban', 'city']):
126
- camera_config = ", Shot on Leica M11, 35mm f/1.4 lens at f/2.8, documentary street photography"
127
- else:
128
- camera_config = ", Shot on Phase One XF IQ4, 80mm f/2.8 lens at f/4, professional photography"
129
-
130
- # Añadir mejoras de iluminación si no están presentes
131
- if 'lighting' not in cleaned_prompt.lower():
132
- if 'dramatic' in cleaned_prompt.lower():
133
- cleaned_prompt += ", dramatic cinematic lighting"
134
- elif 'portrait' in cleaned_prompt.lower():
135
- cleaned_prompt += ", professional studio lighting with subtle rim light"
136
- else:
137
- cleaned_prompt += ", masterful natural lighting"
138
-
139
- # Construir el prompt final
140
- final_prompt = cleaned_prompt + camera_config
141
-
142
- # Asegurar que empiece con mayúscula
143
- final_prompt = final_prompt[0].upper() + final_prompt[1:] if final_prompt else final_prompt
144
 
145
- # Limpiar espacios y comas duplicadas
146
- final_prompt = re.sub(r'\s+', ' ', final_prompt)
147
- final_prompt = re.sub(r',\s*,+', ',', final_prompt)
148
 
149
- return final_prompt
 
 
150
 
151
- @spaces.GPU
152
- def generate_ultra_supreme_prompt(self, image: Any) -> Tuple[str, str, int, Dict[str, int]]:
153
- """
154
- Generate ultra supreme prompt from image usando el pipeline completo
155
-
156
- Returns:
157
- Tuple of (prompt, analysis_info, score, breakdown)
158
- """
159
- try:
160
- # Initialize model if needed
161
- if not self.is_initialized:
162
- if not self.initialize_model():
163
- return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
164
-
165
- # Validate input
166
- if image is None:
167
- return "❌ Please upload an image.", "No image provided.", 0, {}
168
-
169
- self.usage_count += 1
170
-
171
- # Optimize image
172
- image = self.optimize_image(image)
173
- if image is None:
174
- return "❌ Image processing failed.", "Invalid image format.", 0, {}
175
-
176
- start_time = datetime.now()
177
-
178
- # NUEVO PIPELINE: Usar CLIP Interrogator completo
179
- logger.info("ULTRA SUPREME ANALYSIS - Usando pipeline completo de CLIP Interrogator")
180
-
181
- # 1. Obtener el prompt COMPLETO de CLIP Interrogator (no solo análisis)
182
- # Este incluye descripción + artistas + estilos + mediums
183
- full_prompt = self.interrogator.interrogate(image)
184
- logger.info(f"Prompt completo de CLIP Interrogator: {full_prompt}")
185
-
186
- # 2. También obtener los análisis individuales para el reporte
187
- clip_fast = self.interrogator.interrogate_fast(image)
188
- clip_classic = self.interrogator.interrogate_classic(image)
189
-
190
- logger.info(f"Análisis Fast: {clip_fast}")
191
- logger.info(f"Análisis Classic: {clip_classic}")
192
-
193
- # 3. Aplicar reglas de Flux al prompt completo
194
- optimized_prompt = self.apply_flux_rules(full_prompt)
195
-
196
- # 4. Crear análisis para el reporte (simplificado)
197
- analysis_summary = {
198
- "base_prompt": full_prompt,
199
- "clip_fast": clip_fast,
200
- "clip_classic": clip_classic,
201
- "optimized": optimized_prompt,
202
- "detected_style": self._detect_style(full_prompt),
203
- "detected_subject": self._detect_subject(full_prompt)
204
- }
205
-
206
- # 5. Calcular score basado en la riqueza del prompt
207
- score = self._calculate_score(optimized_prompt, full_prompt)
208
- breakdown = {
209
- "base_quality": min(len(full_prompt) // 10, 25),
210
- "technical_enhancement": 25 if "Shot on" in optimized_prompt else 0,
211
- "lighting_quality": 25 if "lighting" in optimized_prompt.lower() else 0,
212
- "composition": 25 if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic"]) else 0
213
- }
214
- score = sum(breakdown.values())
215
-
216
- end_time = datetime.now()
217
- duration = (end_time - start_time).total_seconds()
218
-
219
- # Memory cleanup
220
- if self.device == "cpu":
221
- gc.collect()
222
- else:
223
- torch.cuda.empty_cache()
224
-
225
- # Generate analysis report
226
- analysis_info = self._generate_analysis_report(
227
- analysis_summary, score, breakdown, duration
228
- )
229
-
230
- return optimized_prompt, analysis_info, score, breakdown
231
-
232
- except Exception as e:
233
- logger.error(f"Ultra supreme generation error: {e}")
234
- return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
235
 
236
- def _detect_style(self, prompt: str) -> str:
237
- """Detecta el estilo principal del prompt"""
238
- styles = {
239
- "portrait": ["portrait", "person", "face", "headshot"],
240
- "landscape": ["landscape", "mountain", "nature", "scenery"],
241
- "street": ["street", "urban", "city"],
242
- "artistic": ["artistic", "abstract", "conceptual"],
243
- "dramatic": ["dramatic", "cinematic", "moody"]
244
- }
245
-
246
- for style_name, keywords in styles.items():
247
- if any(keyword in prompt.lower() for keyword in keywords):
248
- return style_name
249
-
250
- return "general"
251
 
252
- def _detect_subject(self, prompt: str) -> str:
253
- """Detecta el sujeto principal del prompt"""
254
- # Tomar las primeras palabras significativas
255
- words = prompt.split(',')[0].split()
256
- if len(words) > 3:
257
- return ' '.join(words[:4])
258
- return prompt.split(',')[0]
259
 
260
- def _calculate_score(self, optimized_prompt: str, base_prompt: str) -> int:
261
- """Calcula el score basado en la calidad del prompt"""
262
- score = 0
263
-
264
- # Base score por longitud y riqueza
265
- score += min(len(base_prompt) // 10, 25)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
- # Technical enhancement
268
- if "Shot on" in optimized_prompt:
269
- score += 25
 
 
 
270
 
271
- # Lighting quality
272
- if "lighting" in optimized_prompt.lower():
273
- score += 25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
 
275
- # Professional quality
276
- if any(word in optimized_prompt.lower() for word in ["professional", "masterful", "epic", "cinematic"]):
277
- score += 25
 
 
 
278
 
279
- return min(score, 100)
280
-
281
- def _generate_analysis_report(self, analysis: Dict[str, Any],
282
- score: int, breakdown: Dict[str, int],
283
- duration: float) -> str:
284
- """Generate detailed analysis report"""
285
 
286
- gpu_status = "⚡ ZeroGPU" if torch.cuda.is_available() else "💻 CPU"
 
 
287
 
288
- # Extraer información clave
289
- detected_style = analysis.get("detected_style", "general").title()
290
- detected_subject = analysis.get("detected_subject", "Unknown")
291
- base_prompt_preview = analysis.get("base_prompt", "")[:100] + "..." if len(analysis.get("base_prompt", "")) > 100 else analysis.get("base_prompt", "")
292
 
293
- analysis_info = f"""**🚀 ULTRA SUPREME ANALYSIS COMPLETE**
294
- **Processing:** {gpu_status} • {duration:.1f}s • Full CLIP Interrogator Pipeline
295
- **Ultra Score:** {score}/100 • Breakdown: Base({breakdown.get('base_quality',0)}) Technical({breakdown.get('technical_enhancement',0)}) Lighting({breakdown.get('lighting_quality',0)}) Composition({breakdown.get('composition',0)})
296
- **Generation:** #{self.usage_count}
297
-
298
- **🧠 INTELLIGENT DETECTION:**
299
- - **Detected Style:** {detected_style}
300
- - **Main Subject:** {detected_subject}
301
- - **Pipeline:** CLIP Interrogator → Flux Optimization → Technical Enhancement
302
-
303
- **📊 CLIP INTERROGATOR ANALYSIS:**
304
- - **Base Prompt:** {base_prompt_preview}
305
- - **Fast Analysis:** {analysis.get('clip_fast', '')[:80]}...
306
- - **Classic Analysis:** {analysis.get('clip_classic', '')[:80]}...
307
 
308
- **⚡ OPTIMIZATION APPLIED:**
309
- - ✅ Preserved CLIP Interrogator's rich description
310
- - ✅ Added professional camera specifications
311
- - ✅ Enhanced lighting descriptions
312
- - ✅ Applied Flux-specific optimizations
313
- - ✅ Removed redundant/generic elements
314
 
315
- **🔬 Powered by Pariente AI Research + CLIP Interrogator**"""
316
-
317
- return analysis_info
 
 
 
 
 
 
 
1
  """
2
+ Ultra Supreme Flux Optimizer - Main Gradio Interface
 
3
  """
4
 
5
+ import gradio as gr
6
+ import torch
7
  import gc
8
  import logging
9
+ import warnings
10
+ import os
 
11
 
12
+ from optimizer import UltraSupremeOptimizer
13
+ from constants import SCORE_GRADES
 
 
14
 
15
+ # Configure warnings and environment
16
+ warnings.filterwarnings("ignore", category=FutureWarning)
17
+ warnings.filterwarnings("ignore", category=UserWarning)
18
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
19
 
20
+ # Configure logging
21
+ logging.basicConfig(level=logging.INFO)
22
  logger = logging.getLogger(__name__)
23
 
24
+ # Initialize the optimizer globally
25
+ optimizer = UltraSupremeOptimizer()
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ def process_ultra_supreme_analysis(image):
29
+ """Process image and generate ultra supreme analysis"""
30
+ try:
31
+ prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
32
 
33
+ # Find appropriate grade based on score
34
+ grade_info = None
35
+ for threshold, grade_data in sorted(SCORE_GRADES.items(), reverse=True):
36
+ if score >= threshold:
37
+ grade_info = grade_data
38
+ break
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ if not grade_info:
41
+ grade_info = SCORE_GRADES[0] # Default to lowest grade
42
+
43
+ score_html = f'''
44
+ <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
45
+ <div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
46
+ <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
47
+ <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
48
+ </div>
49
+ '''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ return prompt, info, score_html
 
 
52
 
53
+ except Exception as e:
54
+ logger.error(f"Ultra supreme wrapper error: {e}")
55
+ return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ def clear_outputs():
59
+ """Clear all outputs and free memory"""
60
+ gc.collect()
61
+ if torch.cuda.is_available():
62
+ torch.cuda.empty_cache()
63
+ return "", "", '<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
 
 
 
 
 
 
 
 
 
64
 
 
 
 
 
 
 
 
65
 
66
+ def create_interface():
67
+ """Create the Gradio interface"""
68
+
69
+ css = """
70
+ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
71
+
72
+ .gradio-container {
73
+ max-width: 1600px !important;
74
+ margin: 0 auto !important;
75
+ font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
76
+ background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
77
+ }
78
+
79
+ /* FIX CRÍTICO PARA TEXTO BLANCO SOBRE BLANCO */
80
+ .markdown-text, .markdown-text *,
81
+ .prose, .prose *,
82
+ .gr-markdown, .gr-markdown *,
83
+ div[class*="markdown"], div[class*="markdown"] * {
84
+ color: #1f2937 !important;
85
+ }
86
+
87
+ .markdown-text h1, .markdown-text h2, .markdown-text h3,
88
+ .prose h1, .prose h2, .prose h3,
89
+ .gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
90
+ color: #111827 !important;
91
+ font-weight: 700 !important;
92
+ }
93
+
94
+ .markdown-text p, .markdown-text li, .markdown-text ul, .markdown-text ol,
95
+ .prose p, .prose li, .prose ul, .prose ol,
96
+ .gr-markdown p, .gr-markdown li, .gr-markdown ul, .gr-markdown ol {
97
+ color: #374151 !important;
98
+ }
99
+
100
+ .markdown-text strong, .prose strong, .gr-markdown strong {
101
+ color: #111827 !important;
102
+ font-weight: 700 !important;
103
+ }
104
+
105
+ /* Asegurar que las listas sean visibles */
106
+ ul, ol {
107
+ color: #374151 !important;
108
+ }
109
+
110
+ li {
111
+ color: #374151 !important;
112
+ }
113
+
114
+ /* Bullets de listas */
115
+ ul li::marker {
116
+ color: #374151 !important;
117
+ }
118
+
119
+ .main-header {
120
+ text-align: center;
121
+ padding: 3rem 0 4rem 0;
122
+ background: linear-gradient(135deg, #0c0a09 0%, #1c1917 30%, #292524 60%, #44403c 100%);
123
+ color: white;
124
+ margin: -2rem -2rem 3rem -2rem;
125
+ border-radius: 0 0 32px 32px;
126
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.25);
127
+ position: relative;
128
+ overflow: hidden;
129
+ }
130
+
131
+ .main-header::before {
132
+ content: '';
133
+ position: absolute;
134
+ top: 0;
135
+ left: 0;
136
+ right: 0;
137
+ bottom: 0;
138
+ background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
139
+ z-index: 1;
140
+ }
141
+
142
+ .main-title {
143
+ font-size: 4rem !important;
144
+ font-weight: 900 !important;
145
+ margin: 0 0 1rem 0 !important;
146
+ letter-spacing: -0.05em !important;
147
+ background: linear-gradient(135deg, #60a5fa 0%, #3b82f6 25%, #8b5cf6 50%, #a855f7 75%, #ec4899 100%);
148
+ -webkit-background-clip: text;
149
+ -webkit-text-fill-color: transparent;
150
+ background-clip: text;
151
+ position: relative;
152
+ z-index: 2;
153
+ }
154
+
155
+ .subtitle {
156
+ font-size: 1.5rem !important;
157
+ font-weight: 500 !important;
158
+ opacity: 0.95 !important;
159
+ margin: 0 !important;
160
+ position: relative;
161
+ z-index: 2;
162
+ color: #ffffff !important;
163
+ }
164
+
165
+ .prompt-output {
166
+ font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
167
+ font-size: 15px !important;
168
+ line-height: 1.8 !important;
169
+ background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
170
+ border: 2px solid #e2e8f0 !important;
171
+ border-radius: 20px !important;
172
+ padding: 2.5rem !important;
173
+ box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
174
+ transition: all 0.3s ease !important;
175
+ color: #1f2937 !important;
176
+ }
177
+
178
+ .prompt-output:hover {
179
+ box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
180
+ transform: translateY(-2px) !important;
181
+ }
182
+
183
+ /* Fix para el output de información */
184
+ .gr-textbox label {
185
+ color: #374151 !important;
186
+ }
187
+
188
+ /* Fix para footer */
189
+ footer, .footer, [class*="footer"] {
190
+ color: #374151 !important;
191
+ }
192
+
193
+ footer *, .footer *, [class*="footer"] * {
194
+ color: #374151 !important;
195
+ }
196
+
197
+ footer a, .footer a, [class*="footer"] a {
198
+ color: #3b82f6 !important;
199
+ text-decoration: underline;
200
+ }
201
+
202
+ footer a:hover, .footer a:hover, [class*="footer"] a:hover {
203
+ color: #2563eb !important;
204
+ }
205
+
206
+ /* Botones */
207
+ .gr-button-primary {
208
+ background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
209
+ border: none !important;
210
+ color: white !important;
211
+ }
212
+
213
+ .gr-button-primary:hover {
214
+ background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
215
+ transform: translateY(-1px);
216
+ box-shadow: 0 4px 12px rgba(37, 99, 235, 0.3);
217
+ }
218
+
219
+ /* Asegurar que TODOS los elementos de texto sean visibles */
220
+ * {
221
+ -webkit-text-fill-color: initial !important;
222
+ }
223
+
224
+ /* Solo el título principal mantiene su gradiente */
225
+ .main-title {
226
+ -webkit-text-fill-color: transparent !important;
227
+ }
228
+ """
229
+
230
+ with gr.Blocks(
231
+ theme=gr.themes.Soft(),
232
+ title="🚀 Ultra Supreme Flux Optimizer",
233
+ css=css
234
+ ) as interface:
235
 
236
+ gr.HTML("""
237
+ <div class="main-header">
238
+ <div class="main-title">🚀 ULTRA SUPREME FLUX OPTIMIZER</div>
239
+ <div class="subtitle">Maximum Absolute Intelligence • Triple CLIP Analysis • Zero Compromise • Research Supremacy</div>
240
+ </div>
241
+ """)
242
 
243
+ with gr.Row():
244
+ with gr.Column(scale=1):
245
+ gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
246
+
247
+ image_input = gr.Image(
248
+ label="Upload image for MAXIMUM intelligence analysis",
249
+ type="pil",
250
+ height=500
251
+ )
252
+
253
+ analyze_btn = gr.Button(
254
+ "🚀 ULTRA SUPREME ANALYSIS",
255
+ variant="primary",
256
+ size="lg"
257
+ )
258
+
259
+ gr.Markdown("""
260
+ ### 🔬 Maximum Absolute Intelligence
261
+
262
+ **🚀 Triple CLIP Interrogation:**
263
+ • Fast analysis for broad contextual mapping
264
+ • Classic analysis for detailed feature extraction
265
+ • Best analysis for maximum depth intelligence
266
+
267
+ **🧠 Ultra Deep Feature Extraction:**
268
+ • Micro-age detection with confidence scoring
269
+ • Cultural/religious context with semantic analysis
270
+ • Facial micro-features and expression mapping
271
+ • Emotional state and micro-expression detection
272
+ • Environmental lighting and atmospheric analysis
273
+ • Body language and pose interpretation
274
+ • Technical photography optimization
275
+
276
+ **⚡ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
277
+ """)
278
+
279
+ with gr.Column(scale=1):
280
+ gr.Markdown("## ⚡ Ultra Supreme Result")
281
+
282
+ prompt_output = gr.Textbox(
283
+ label="🚀 Ultra Supreme Optimized Flux Prompt",
284
+ placeholder="Upload an image to witness absolute maximum intelligence analysis...",
285
+ lines=12,
286
+ max_lines=20,
287
+ elem_classes=["prompt-output"],
288
+ show_copy_button=True
289
+ )
290
+
291
+ score_output = gr.HTML(
292
+ value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
293
+ )
294
+
295
+ info_output = gr.Markdown(value="")
296
+
297
+ clear_btn = gr.Button("🗑️ Clear Ultra Analysis", size="sm")
298
 
299
+ # Event handlers
300
+ analyze_btn.click(
301
+ fn=process_ultra_supreme_analysis,
302
+ inputs=[image_input],
303
+ outputs=[prompt_output, info_output, score_output]
304
+ )
305
 
306
+ clear_btn.click(
307
+ fn=clear_outputs,
308
+ outputs=[prompt_output, info_output, score_output]
309
+ )
 
 
310
 
311
+ gr.Markdown("""
312
+ ---
313
+ ### 🏆 Ultra Supreme Research Foundation
314
 
315
+ This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
316
+ ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
317
+ understanding and applies research-validated Flux rules with supreme intelligence.
 
318
 
319
+ **🔬 Pariente AI Research Laboratory** • **🚀 Ultra Supreme Intelligence Engine**
320
+ """)
321
+
322
+ return interface
 
 
 
 
 
 
 
 
 
 
323
 
 
 
 
 
 
 
324
 
325
+ # Main execution
326
+ if __name__ == "__main__":
327
+ demo = create_interface()
328
+ demo.launch(
329
+ server_name="0.0.0.0",
330
+ server_port=7860,
331
+ share=True,
332
+ show_error=True
333
+ )