Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,109 @@
|
|
1 |
"""
|
2 |
-
|
|
|
3 |
"""
|
4 |
|
5 |
import gradio as gr
|
6 |
-
import torch
|
7 |
-
import gc
|
8 |
import logging
|
9 |
import warnings
|
10 |
import os
|
|
|
11 |
|
12 |
-
from
|
13 |
-
from
|
|
|
14 |
|
15 |
-
# Configure
|
16 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
17 |
warnings.filterwarnings("ignore", category=UserWarning)
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
-
# NO inicializar el optimizer globalmente
|
25 |
-
optimizer = None
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
return optimizer
|
34 |
-
|
35 |
-
|
36 |
-
def process_ultra_supreme_analysis(image):
|
37 |
-
"""Process image and generate ultra supreme analysis"""
|
38 |
-
try:
|
39 |
-
# Obtener optimizer (lazy initialization)
|
40 |
-
opt = get_optimizer()
|
41 |
-
|
42 |
-
prompt, info, score, breakdown = opt.generate_ultra_supreme_prompt(image)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
score_html = f'''
|
55 |
-
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
56 |
-
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
57 |
-
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
|
58 |
-
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
|
59 |
-
</div>
|
60 |
-
'''
|
61 |
|
62 |
-
return prompt,
|
63 |
|
64 |
except Exception as e:
|
65 |
-
logger.error(f"
|
66 |
-
error_msg = str(e)
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
-
def
|
73 |
-
"""Clear all outputs and free memory"""
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
def create_interface():
|
81 |
-
"""Create the Gradio interface"""
|
82 |
|
|
|
83 |
css = """
|
84 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800
|
85 |
|
86 |
.gradio-container {
|
87 |
-
max-width:
|
88 |
margin: 0 auto !important;
|
89 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
90 |
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
|
91 |
}
|
92 |
|
93 |
-
/*
|
94 |
.markdown-text, .markdown-text *,
|
95 |
.prose, .prose *,
|
96 |
.gr-markdown, .gr-markdown *,
|
@@ -102,246 +115,252 @@ def create_interface():
|
|
102 |
.prose h1, .prose h2, .prose h3,
|
103 |
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
|
104 |
color: #111827 !important;
|
105 |
-
font-weight:
|
106 |
}
|
107 |
|
108 |
-
.markdown-text p, .markdown-text li,
|
109 |
-
.prose p, .prose li,
|
110 |
-
.gr-markdown p, .gr-markdown li
|
111 |
color: #374151 !important;
|
112 |
}
|
113 |
|
114 |
.markdown-text strong, .prose strong, .gr-markdown strong {
|
115 |
color: #111827 !important;
|
116 |
-
font-weight:
|
117 |
-
}
|
118 |
-
|
119 |
-
/* Asegurar que las listas sean visibles */
|
120 |
-
ul, ol {
|
121 |
-
color: #374151 !important;
|
122 |
-
}
|
123 |
-
|
124 |
-
li {
|
125 |
-
color: #374151 !important;
|
126 |
-
}
|
127 |
-
|
128 |
-
/* Bullets de listas */
|
129 |
-
ul li::marker {
|
130 |
-
color: #374151 !important;
|
131 |
}
|
132 |
|
|
|
133 |
.main-header {
|
134 |
text-align: center;
|
135 |
-
padding:
|
136 |
-
background: linear-gradient(135deg, #
|
137 |
color: white;
|
138 |
-
margin: -2rem -2rem
|
139 |
-
border-radius: 0 0
|
140 |
-
box-shadow: 0
|
141 |
-
position: relative;
|
142 |
-
overflow: hidden;
|
143 |
-
}
|
144 |
-
|
145 |
-
.main-header::before {
|
146 |
-
content: '';
|
147 |
-
position: absolute;
|
148 |
-
top: 0;
|
149 |
-
left: 0;
|
150 |
-
right: 0;
|
151 |
-
bottom: 0;
|
152 |
-
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
|
153 |
-
z-index: 1;
|
154 |
}
|
155 |
|
156 |
.main-title {
|
157 |
-
font-size:
|
158 |
-
font-weight:
|
159 |
-
margin: 0 0
|
160 |
-
letter-spacing: -0.
|
161 |
-
|
162 |
-
-webkit-background-clip: text;
|
163 |
-
-webkit-text-fill-color: transparent;
|
164 |
-
background-clip: text;
|
165 |
-
position: relative;
|
166 |
-
z-index: 2;
|
167 |
}
|
168 |
|
169 |
.subtitle {
|
170 |
-
font-size: 1.
|
171 |
-
font-weight:
|
172 |
-
opacity: 0.
|
173 |
margin: 0 !important;
|
174 |
-
|
175 |
-
z-index: 2;
|
176 |
-
color: #ffffff !important;
|
177 |
}
|
178 |
|
|
|
179 |
.prompt-output {
|
180 |
-
font-family: 'SF Mono', 'Monaco', '
|
181 |
-
font-size:
|
182 |
-
line-height: 1.
|
183 |
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
|
184 |
border: 2px solid #e2e8f0 !important;
|
185 |
-
border-radius:
|
186 |
-
padding:
|
187 |
-
box-shadow: 0
|
188 |
transition: all 0.3s ease !important;
|
189 |
color: #1f2937 !important;
|
190 |
}
|
191 |
|
192 |
.prompt-output:hover {
|
193 |
-
box-shadow: 0 25px
|
194 |
-
transform: translateY(-
|
195 |
-
}
|
196 |
-
|
197 |
-
/* Fix para el output de información */
|
198 |
-
.gr-textbox label {
|
199 |
-
color: #374151 !important;
|
200 |
-
}
|
201 |
-
|
202 |
-
/* Fix para footer */
|
203 |
-
footer, .footer, [class*="footer"] {
|
204 |
-
color: #374151 !important;
|
205 |
-
}
|
206 |
-
|
207 |
-
footer *, .footer *, [class*="footer"] * {
|
208 |
-
color: #374151 !important;
|
209 |
-
}
|
210 |
-
|
211 |
-
footer a, .footer a, [class*="footer"] a {
|
212 |
-
color: #3b82f6 !important;
|
213 |
-
text-decoration: underline;
|
214 |
}
|
215 |
|
216 |
-
|
217 |
-
color: #2563eb !important;
|
218 |
-
}
|
219 |
-
|
220 |
-
/* Botones */
|
221 |
.gr-button-primary {
|
222 |
background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
|
223 |
border: none !important;
|
224 |
color: white !important;
|
|
|
|
|
|
|
|
|
225 |
}
|
226 |
|
227 |
.gr-button-primary:hover {
|
228 |
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
|
229 |
-
transform: translateY(-1px);
|
230 |
-
box-shadow: 0 4px 12px rgba(37, 99, 235, 0.3);
|
231 |
}
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
236 |
}
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
}
|
242 |
"""
|
243 |
|
244 |
with gr.Blocks(
|
245 |
-
theme=gr.themes.Soft(
|
246 |
-
|
|
|
|
|
|
|
|
|
247 |
css=css
|
248 |
) as interface:
|
249 |
|
|
|
250 |
gr.HTML("""
|
251 |
<div class="main-header">
|
252 |
-
<div class="main-title"
|
253 |
-
<div class="subtitle">
|
254 |
</div>
|
255 |
""")
|
256 |
|
|
|
257 |
with gr.Row():
|
|
|
258 |
with gr.Column(scale=1):
|
259 |
-
gr.Markdown("##
|
260 |
|
261 |
image_input = gr.Image(
|
262 |
-
label="Upload
|
263 |
type="pil",
|
264 |
-
height=
|
265 |
)
|
266 |
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
|
|
273 |
gr.Markdown("""
|
274 |
-
###
|
275 |
|
276 |
-
|
277 |
-
• Fast analysis for broad contextual mapping
|
278 |
-
• Classic analysis for detailed feature extraction
|
279 |
-
• Best analysis for maximum depth intelligence
|
280 |
|
281 |
-
|
282 |
-
• Micro-age detection with confidence scoring
|
283 |
-
• Cultural/religious context with semantic analysis
|
284 |
-
• Facial micro-features and expression mapping
|
285 |
-
• Emotional state and micro-expression detection
|
286 |
-
• Environmental lighting and atmospheric analysis
|
287 |
-
• Body language and pose interpretation
|
288 |
-
• Technical photography optimization
|
289 |
|
290 |
-
|
|
|
|
|
291 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
|
|
293 |
with gr.Column(scale=1):
|
294 |
-
gr.Markdown("##
|
|
|
|
|
|
|
|
|
|
|
295 |
|
|
|
296 |
prompt_output = gr.Textbox(
|
297 |
-
label="
|
298 |
-
placeholder="Upload an image to
|
299 |
-
lines=
|
300 |
-
max_lines=
|
301 |
elem_classes=["prompt-output"],
|
302 |
show_copy_button=True
|
303 |
)
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
info_output = gr.Markdown(value="")
|
310 |
-
|
311 |
-
clear_btn = gr.Button("🗑️ Clear Ultra Analysis", size="sm")
|
312 |
|
313 |
# Event handlers
|
314 |
analyze_btn.click(
|
315 |
-
fn=
|
316 |
inputs=[image_input],
|
317 |
outputs=[prompt_output, info_output, score_output]
|
318 |
)
|
319 |
|
320 |
clear_btn.click(
|
321 |
-
fn=
|
322 |
outputs=[prompt_output, info_output, score_output]
|
323 |
)
|
324 |
|
|
|
325 |
gr.Markdown("""
|
326 |
---
|
327 |
-
|
328 |
-
|
329 |
-
This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
|
330 |
-
ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
|
331 |
-
understanding and applies research-validated Flux rules with supreme intelligence.
|
332 |
|
333 |
-
|
|
|
|
|
334 |
""")
|
335 |
|
336 |
return interface
|
337 |
|
338 |
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
341 |
demo = create_interface()
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
Frame 0 Laboratory for MIA - Main Gradio Interface
|
3 |
+
FLUX Prompt Optimizer with clean, professional interface
|
4 |
"""
|
5 |
|
6 |
import gradio as gr
|
|
|
|
|
7 |
import logging
|
8 |
import warnings
|
9 |
import os
|
10 |
+
from typing import Tuple
|
11 |
|
12 |
+
from config import APP_CONFIG, ENVIRONMENT
|
13 |
+
from processor import process_image_simple, flux_optimizer
|
14 |
+
from utils import setup_logging, clean_memory
|
15 |
|
16 |
+
# Configure environment
|
17 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
18 |
warnings.filterwarnings("ignore", category=UserWarning)
|
19 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
|
21 |
+
# Setup logging
|
22 |
+
setup_logging(ENVIRONMENT["log_level"])
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
|
|
|
|
25 |
|
26 |
+
def process_image_interface(image) -> Tuple[str, str, str]:
|
27 |
+
"""
|
28 |
+
Main interface function for image processing
|
29 |
+
|
30 |
+
Args:
|
31 |
+
image: Input image from Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
Returns:
|
34 |
+
Tuple of (prompt, analysis_report, score_html)
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
if image is None:
|
38 |
+
return (
|
39 |
+
"Please upload an image to analyze",
|
40 |
+
"No image provided for analysis.",
|
41 |
+
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
|
42 |
+
)
|
43 |
|
44 |
+
logger.info("Processing image through interface")
|
45 |
+
prompt, report, score_html = process_image_simple(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return prompt, report, score_html
|
48 |
|
49 |
except Exception as e:
|
50 |
+
logger.error(f"Interface processing error: {e}", exc_info=True)
|
51 |
+
error_msg = f"Processing failed: {str(e)}"
|
52 |
+
|
53 |
+
return (
|
54 |
+
"❌ Processing failed",
|
55 |
+
f"**Error:** {error_msg}\n\nPlease try again with a different image.",
|
56 |
+
'<div style="text-align: center; padding: 1rem; color: red;"><div style="font-size: 2rem;">0</div><div style="font-size: 0.875rem;">Error</div></div>'
|
57 |
+
)
|
58 |
|
59 |
|
60 |
+
def clear_interface() -> Tuple[str, str, str]:
|
61 |
+
"""Clear all interface outputs and free memory"""
|
62 |
+
clean_memory()
|
63 |
+
logger.info("Interface cleared")
|
64 |
+
|
65 |
+
return (
|
66 |
+
"",
|
67 |
+
"",
|
68 |
+
'<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def get_stats_info() -> str:
|
73 |
+
"""Get current processing statistics"""
|
74 |
+
try:
|
75 |
+
stats = flux_optimizer.get_stats()
|
76 |
+
|
77 |
+
stats_text = f"""**Processing Statistics:**
|
78 |
+
• **Total Images:** {stats['total_processed']}
|
79 |
+
• **Successful:** {stats['successful_analyses']}
|
80 |
+
• **Failed:** {stats['failed_analyses']}
|
81 |
+
• **Success Rate:** {stats['success_rate']:.1%}
|
82 |
+
• **Average Time:** {stats['average_processing_time']:.1f}s
|
83 |
+
• **Device:** {stats['device_info']['device'].upper()}
|
84 |
+
"""
|
85 |
+
return stats_text
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Stats retrieval error: {e}")
|
89 |
+
return "Statistics unavailable"
|
90 |
|
91 |
|
92 |
def create_interface():
|
93 |
+
"""Create the main Gradio interface"""
|
94 |
|
95 |
+
# Custom CSS for clean, professional look
|
96 |
css = """
|
97 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
|
98 |
|
99 |
.gradio-container {
|
100 |
+
max-width: 1400px !important;
|
101 |
margin: 0 auto !important;
|
102 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
103 |
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
|
104 |
}
|
105 |
|
106 |
+
/* Text visibility fixes */
|
107 |
.markdown-text, .markdown-text *,
|
108 |
.prose, .prose *,
|
109 |
.gr-markdown, .gr-markdown *,
|
|
|
115 |
.prose h1, .prose h2, .prose h3,
|
116 |
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
|
117 |
color: #111827 !important;
|
118 |
+
font-weight: 600 !important;
|
119 |
}
|
120 |
|
121 |
+
.markdown-text p, .markdown-text li,
|
122 |
+
.prose p, .prose li,
|
123 |
+
.gr-markdown p, .gr-markdown li {
|
124 |
color: #374151 !important;
|
125 |
}
|
126 |
|
127 |
.markdown-text strong, .prose strong, .gr-markdown strong {
|
128 |
color: #111827 !important;
|
129 |
+
font-weight: 600 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
}
|
131 |
|
132 |
+
/* Header styling */
|
133 |
.main-header {
|
134 |
text-align: center;
|
135 |
+
padding: 2.5rem 0 3rem 0;
|
136 |
+
background: linear-gradient(135deg, #1e293b 0%, #334155 50%, #475569 100%);
|
137 |
color: white;
|
138 |
+
margin: -2rem -2rem 2rem -2rem;
|
139 |
+
border-radius: 0 0 24px 24px;
|
140 |
+
box-shadow: 0 10px 30px -5px rgba(0, 0, 0, 0.2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
142 |
|
143 |
.main-title {
|
144 |
+
font-size: 2.5rem !important;
|
145 |
+
font-weight: 700 !important;
|
146 |
+
margin: 0 0 0.5rem 0 !important;
|
147 |
+
letter-spacing: -0.025em !important;
|
148 |
+
color: #ffffff !important;
|
|
|
|
|
|
|
|
|
|
|
149 |
}
|
150 |
|
151 |
.subtitle {
|
152 |
+
font-size: 1.125rem !important;
|
153 |
+
font-weight: 400 !important;
|
154 |
+
opacity: 0.9 !important;
|
155 |
margin: 0 !important;
|
156 |
+
color: #cbd5e1 !important;
|
|
|
|
|
157 |
}
|
158 |
|
159 |
+
/* Prompt output styling */
|
160 |
.prompt-output {
|
161 |
+
font-family: 'SF Mono', 'Monaco', 'Consolas', monospace !important;
|
162 |
+
font-size: 14px !important;
|
163 |
+
line-height: 1.6 !important;
|
164 |
background: linear-gradient(135deg, #ffffff 0%, #f8fafc 100%) !important;
|
165 |
border: 2px solid #e2e8f0 !important;
|
166 |
+
border-radius: 12px !important;
|
167 |
+
padding: 1.5rem !important;
|
168 |
+
box-shadow: 0 4px 15px -2px rgba(0, 0, 0, 0.08) !important;
|
169 |
transition: all 0.3s ease !important;
|
170 |
color: #1f2937 !important;
|
171 |
}
|
172 |
|
173 |
.prompt-output:hover {
|
174 |
+
box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.12) !important;
|
175 |
+
transform: translateY(-1px) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
}
|
177 |
|
178 |
+
/* Button styling */
|
|
|
|
|
|
|
|
|
179 |
.gr-button-primary {
|
180 |
background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
|
181 |
border: none !important;
|
182 |
color: white !important;
|
183 |
+
font-weight: 500 !important;
|
184 |
+
padding: 0.75rem 1.5rem !important;
|
185 |
+
border-radius: 8px !important;
|
186 |
+
transition: all 0.2s ease !important;
|
187 |
}
|
188 |
|
189 |
.gr-button-primary:hover {
|
190 |
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%) !important;
|
191 |
+
transform: translateY(-1px) !important;
|
192 |
+
box-shadow: 0 4px 12px rgba(37, 99, 235, 0.3) !important;
|
193 |
}
|
194 |
|
195 |
+
.gr-button-secondary {
|
196 |
+
background: #f1f5f9 !important;
|
197 |
+
border: 1px solid #cbd5e1 !important;
|
198 |
+
color: #475569 !important;
|
199 |
+
font-weight: 500 !important;
|
200 |
+
border-radius: 8px !important;
|
201 |
}
|
202 |
|
203 |
+
.gr-button-secondary:hover {
|
204 |
+
background: #e2e8f0 !important;
|
205 |
+
border-color: #94a3b8 !important;
|
206 |
+
}
|
207 |
+
|
208 |
+
/* Image upload area */
|
209 |
+
.gr-file-upload {
|
210 |
+
border: 2px dashed #cbd5e1 !important;
|
211 |
+
border-radius: 12px !important;
|
212 |
+
background: #f8fafc !important;
|
213 |
+
}
|
214 |
+
|
215 |
+
/* Info boxes */
|
216 |
+
.info-box {
|
217 |
+
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
|
218 |
+
border: 1px solid #0284c7;
|
219 |
+
border-radius: 12px;
|
220 |
+
padding: 1rem;
|
221 |
+
margin: 1rem 0;
|
222 |
}
|
223 |
"""
|
224 |
|
225 |
with gr.Blocks(
|
226 |
+
theme=gr.themes.Soft(
|
227 |
+
primary_hue="blue",
|
228 |
+
secondary_hue="slate",
|
229 |
+
neutral_hue="slate"
|
230 |
+
),
|
231 |
+
title="Frame 0 Laboratory for MIA",
|
232 |
css=css
|
233 |
) as interface:
|
234 |
|
235 |
+
# Header
|
236 |
gr.HTML("""
|
237 |
<div class="main-header">
|
238 |
+
<div class="main-title">Frame 0 Laboratory for MIA</div>
|
239 |
+
<div class="subtitle">Advanced Image Analysis & FLUX Prompt Optimization</div>
|
240 |
</div>
|
241 |
""")
|
242 |
|
243 |
+
# Main interface
|
244 |
with gr.Row():
|
245 |
+
# Left column - Input
|
246 |
with gr.Column(scale=1):
|
247 |
+
gr.Markdown("## Image Analysis")
|
248 |
|
249 |
image_input = gr.Image(
|
250 |
+
label="Upload Image for Analysis",
|
251 |
type="pil",
|
252 |
+
height=400
|
253 |
)
|
254 |
|
255 |
+
with gr.Row():
|
256 |
+
analyze_btn = gr.Button(
|
257 |
+
"🔍 Analyze Image",
|
258 |
+
variant="primary",
|
259 |
+
size="lg"
|
260 |
+
)
|
261 |
+
|
262 |
+
clear_btn = gr.Button(
|
263 |
+
"🗑️ Clear",
|
264 |
+
variant="secondary",
|
265 |
+
size="lg"
|
266 |
+
)
|
267 |
|
268 |
+
# Information panel
|
269 |
gr.Markdown("""
|
270 |
+
### How it works:
|
271 |
|
272 |
+
**1. Image Analysis:** Advanced AI models analyze your image to understand content, composition, and style.
|
|
|
|
|
|
|
273 |
|
274 |
+
**2. FLUX Optimization:** Applies proven rules for FLUX image generation including camera settings, lighting, and technical parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
**3. Quality Scoring:** Evaluates the optimized prompt across multiple dimensions for best results.
|
277 |
+
|
278 |
+
**Supported formats:** JPG, PNG, WebP up to 1024px
|
279 |
""")
|
280 |
+
|
281 |
+
# Statistics (collapsible)
|
282 |
+
with gr.Accordion("📊 Processing Stats", open=False):
|
283 |
+
stats_output = gr.Markdown(value="No processing completed yet.")
|
284 |
+
|
285 |
+
refresh_stats_btn = gr.Button("Refresh Stats", size="sm")
|
286 |
+
refresh_stats_btn.click(
|
287 |
+
fn=get_stats_info,
|
288 |
+
outputs=stats_output
|
289 |
+
)
|
290 |
|
291 |
+
# Right column - Output
|
292 |
with gr.Column(scale=1):
|
293 |
+
gr.Markdown("## Results")
|
294 |
+
|
295 |
+
# Score display
|
296 |
+
score_output = gr.HTML(
|
297 |
+
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Quality Score</div></div>'
|
298 |
+
)
|
299 |
|
300 |
+
# Optimized prompt
|
301 |
prompt_output = gr.Textbox(
|
302 |
+
label="🎯 Optimized FLUX Prompt",
|
303 |
+
placeholder="Upload an image to generate an optimized prompt...",
|
304 |
+
lines=8,
|
305 |
+
max_lines=15,
|
306 |
elem_classes=["prompt-output"],
|
307 |
show_copy_button=True
|
308 |
)
|
309 |
|
310 |
+
# Analysis report
|
311 |
+
with gr.Accordion("📋 Detailed Analysis", open=True):
|
312 |
+
info_output = gr.Markdown(value="")
|
|
|
|
|
|
|
|
|
313 |
|
314 |
# Event handlers
|
315 |
analyze_btn.click(
|
316 |
+
fn=process_image_interface,
|
317 |
inputs=[image_input],
|
318 |
outputs=[prompt_output, info_output, score_output]
|
319 |
)
|
320 |
|
321 |
clear_btn.click(
|
322 |
+
fn=clear_interface,
|
323 |
outputs=[prompt_output, info_output, score_output]
|
324 |
)
|
325 |
|
326 |
+
# Footer
|
327 |
gr.Markdown("""
|
328 |
---
|
329 |
+
**Frame 0 Laboratory for MIA** • Advanced AI Research & Development
|
|
|
|
|
|
|
|
|
330 |
|
331 |
+
This tool uses state-of-the-art vision-language models to analyze images and generate optimized prompts
|
332 |
+
for FLUX image generation. The system applies proven optimization rules including camera configurations,
|
333 |
+
lighting setups, and technical parameters for best results.
|
334 |
""")
|
335 |
|
336 |
return interface
|
337 |
|
338 |
|
339 |
+
def main():
|
340 |
+
"""Main application entry point"""
|
341 |
+
logger.info("Starting Frame 0 Laboratory for MIA")
|
342 |
+
|
343 |
+
# Create and launch interface
|
344 |
demo = create_interface()
|
345 |
+
|
346 |
+
# Launch configuration
|
347 |
+
launch_config = {
|
348 |
+
"server_name": "0.0.0.0",
|
349 |
+
"server_port": 7860,
|
350 |
+
"show_error": True,
|
351 |
+
"show_tips": True,
|
352 |
+
"enable_queue": True
|
353 |
+
}
|
354 |
+
|
355 |
+
# Add share option for Spaces
|
356 |
+
if ENVIRONMENT["is_spaces"]:
|
357 |
+
launch_config["share"] = False # Spaces handles sharing
|
358 |
+
else:
|
359 |
+
launch_config["share"] = True # Enable sharing for local
|
360 |
+
|
361 |
+
logger.info(f"Launching on port {launch_config['server_port']}")
|
362 |
+
demo.launch(**launch_config)
|
363 |
+
|
364 |
+
|
365 |
+
if __name__ == "__main__":
|
366 |
+
main()
|