Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ import math
|
|
15 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
16 |
warnings.filterwarnings("ignore", category=UserWarning)
|
17 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
@@ -32,9 +33,12 @@ class UltraSupremeAnalyzer:
|
|
32 |
"""
|
33 |
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
|
34 |
"""
|
|
|
35 |
def __init__(self):
|
36 |
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
|
|
|
37 |
# ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
|
|
|
38 |
self.micro_age_indicators = {
|
39 |
"infant": ["baby", "infant", "newborn", "toddler"],
|
40 |
"child": ["child", "kid", "young", "little", "small", "youth"],
|
@@ -44,6 +48,7 @@ class UltraSupremeAnalyzer:
|
|
44 |
"senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
|
45 |
"elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
|
46 |
}
|
|
|
47 |
self.ultra_facial_analysis = {
|
48 |
"eye_features": {
|
49 |
"shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
|
@@ -66,11 +71,13 @@ class UltraSupremeAnalyzer:
|
|
66 |
"skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
|
67 |
"facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
|
68 |
}
|
|
|
69 |
self.emotion_micro_expressions = {
|
70 |
"primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
|
71 |
"complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
|
72 |
"emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
|
73 |
}
|
|
|
74 |
self.cultural_religious_ultra = {
|
75 |
"jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
|
76 |
"christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
|
@@ -82,6 +89,7 @@ class UltraSupremeAnalyzer:
|
|
82 |
"general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
|
83 |
}
|
84 |
}
|
|
|
85 |
self.clothing_accessories_ultra = {
|
86 |
"headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
|
87 |
"eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
|
@@ -90,6 +98,7 @@ class UltraSupremeAnalyzer:
|
|
90 |
"clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
|
91 |
"accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
|
92 |
}
|
|
|
93 |
self.environmental_ultra_analysis = {
|
94 |
"indoor_settings": {
|
95 |
"residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
|
@@ -110,6 +119,7 @@ class UltraSupremeAnalyzer:
|
|
110 |
"quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
|
111 |
}
|
112 |
}
|
|
|
113 |
self.pose_body_language_ultra = {
|
114 |
"head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
|
115 |
"posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
|
@@ -118,6 +128,7 @@ class UltraSupremeAnalyzer:
|
|
118 |
"eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
|
119 |
"overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
|
120 |
}
|
|
|
121 |
self.composition_photography_ultra = {
|
122 |
"shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
|
123 |
"angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
|
@@ -125,6 +136,7 @@ class UltraSupremeAnalyzer:
|
|
125 |
"depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
|
126 |
"camera_movement": ["static", "handheld", "stabilized", "smooth"]
|
127 |
}
|
|
|
128 |
self.technical_photography_ultra = {
|
129 |
"camera_systems": {
|
130 |
"professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
|
@@ -139,6 +151,7 @@ class UltraSupremeAnalyzer:
|
|
139 |
"aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
|
140 |
"photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
|
141 |
}
|
|
|
142 |
self.quality_descriptors_ultra = {
|
143 |
"based_on_age": {
|
144 |
"elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
|
@@ -157,15 +170,16 @@ class UltraSupremeAnalyzer:
|
|
157 |
"artistic": ["creative", "expressive", "aesthetic", "artistic"]
|
158 |
}
|
159 |
}
|
160 |
-
|
161 |
-
def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
|
162 |
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
|
|
|
163 |
combined_analysis = {
|
164 |
"fast": clip_fast.lower(),
|
165 |
"classic": clip_classic.lower(),
|
166 |
"best": clip_best.lower(),
|
167 |
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
|
168 |
}
|
|
|
169 |
ultra_result = {
|
170 |
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
|
171 |
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
|
@@ -176,54 +190,66 @@ class UltraSupremeAnalyzer:
|
|
176 |
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
|
177 |
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
|
178 |
}
|
|
|
179 |
# ULTRA DEEP AGE ANALYSIS
|
180 |
age_scores = {}
|
181 |
for age_category, indicators in self.micro_age_indicators.items():
|
182 |
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
|
183 |
if score > 0:
|
184 |
age_scores[age_category] = score
|
|
|
185 |
if age_scores:
|
186 |
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
|
187 |
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
|
|
|
188 |
# GENDER DETECTION WITH CONFIDENCE
|
189 |
male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
|
190 |
female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
|
|
|
191 |
male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
|
192 |
female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
|
|
|
193 |
if male_score > female_score:
|
194 |
ultra_result["demographic"]["gender"] = "man"
|
195 |
elif female_score > male_score:
|
196 |
ultra_result["demographic"]["gender"] = "woman"
|
|
|
197 |
# ULTRA CULTURAL/RELIGIOUS ANALYSIS
|
198 |
for culture_type, indicators in self.cultural_religious_ultra.items():
|
199 |
if isinstance(indicators, list):
|
200 |
for indicator in indicators:
|
201 |
if indicator.lower() in combined_analysis["combined"]:
|
202 |
ultra_result["demographic"]["cultural_religious"].append(indicator)
|
|
|
203 |
# COMPREHENSIVE FACIAL FEATURE ANALYSIS
|
204 |
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
|
205 |
for feature in features:
|
206 |
if feature in combined_analysis["combined"]:
|
207 |
ultra_result["facial_ultra"]["facial_hair"].append(feature)
|
|
|
208 |
# Eyes analysis
|
209 |
for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
|
210 |
for feature in features:
|
211 |
if feature in combined_analysis["combined"]:
|
212 |
ultra_result["facial_ultra"]["eyes"].append(feature)
|
|
|
213 |
# EMOTION AND MICRO-EXPRESSION ANALYSIS
|
214 |
emotion_scores = {}
|
215 |
for emotion in self.emotion_micro_expressions["complex_emotions"]:
|
216 |
if emotion in combined_analysis["combined"]:
|
217 |
emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
|
|
|
218 |
if emotion_scores:
|
219 |
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
|
220 |
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
|
|
|
221 |
# CLOTHING AND ACCESSORIES ANALYSIS
|
222 |
for category, items in self.clothing_accessories_ultra.items():
|
223 |
if isinstance(items, list):
|
224 |
for item in items:
|
225 |
if item in combined_analysis["combined"]:
|
226 |
ultra_result["clothing_accessories"][category].append(item)
|
|
|
227 |
# ENVIRONMENTAL ULTRA ANALYSIS
|
228 |
setting_scores = {}
|
229 |
for main_setting, sub_settings in self.environmental_ultra_analysis.items():
|
@@ -232,33 +258,41 @@ class UltraSupremeAnalyzer:
|
|
232 |
score = sum(1 for location in locations if location in combined_analysis["combined"])
|
233 |
if score > 0:
|
234 |
setting_scores[sub_type] = score
|
|
|
235 |
if setting_scores:
|
236 |
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
|
|
|
237 |
# LIGHTING ANALYSIS
|
238 |
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
|
239 |
for light_type in light_types:
|
240 |
if light_type in combined_analysis["combined"]:
|
241 |
ultra_result["environmental"]["lighting_analysis"].append(light_type)
|
|
|
242 |
# POSE AND BODY LANGUAGE ANALYSIS
|
243 |
for pose_category, indicators in self.pose_body_language_ultra.items():
|
244 |
for indicator in indicators:
|
245 |
if indicator in combined_analysis["combined"]:
|
246 |
ultra_result["pose_composition"][pose_category].append(indicator)
|
|
|
247 |
# TECHNICAL PHOTOGRAPHY ANALYSIS
|
248 |
for shot_type in self.composition_photography_ultra["shot_types"]:
|
249 |
if shot_type in combined_analysis["combined"]:
|
250 |
ultra_result["technical_analysis"]["shot_type"] = shot_type
|
251 |
break
|
|
|
252 |
# CALCULATE INTELLIGENCE METRICS
|
253 |
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
|
254 |
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
|
255 |
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
|
256 |
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
|
|
|
257 |
return ultra_result
|
258 |
-
|
259 |
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
|
260 |
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
|
|
|
261 |
components = []
|
|
|
262 |
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
|
263 |
subject_desc = []
|
264 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
@@ -267,37 +301,47 @@ class UltraSupremeAnalyzer:
|
|
267 |
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
|
268 |
if ultra_analysis["demographic"]["gender"]:
|
269 |
subject_desc.append(ultra_analysis["demographic"]["gender"])
|
|
|
270 |
if subject_desc:
|
271 |
full_subject = " ".join(subject_desc)
|
272 |
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
|
273 |
else:
|
274 |
article = "A"
|
275 |
components.append(article)
|
|
|
276 |
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
|
277 |
adjectives = []
|
|
|
278 |
# Age-based adjectives
|
279 |
age_cat = ultra_analysis["demographic"]["age_category"]
|
280 |
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
|
281 |
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
|
|
|
282 |
# Emotion-based adjectives
|
283 |
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
284 |
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
|
285 |
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
|
|
|
286 |
# Default if none found
|
287 |
if not adjectives:
|
288 |
adjectives = ["distinguished", "professional"]
|
|
|
289 |
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
|
|
|
290 |
# 3. ULTRA ENHANCED SUBJECT
|
291 |
if subject_desc:
|
292 |
components.append(" ".join(subject_desc))
|
293 |
else:
|
294 |
components.append("person")
|
|
|
295 |
# 4. ULTRA DETAILED FACIAL FEATURES
|
296 |
facial_details = []
|
|
|
297 |
# Eyes
|
298 |
if ultra_analysis["facial_ultra"]["eyes"]:
|
299 |
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
|
300 |
facial_details.append(f"with {eye_desc}")
|
|
|
301 |
# Facial hair with ultra detail
|
302 |
if ultra_analysis["facial_ultra"]["facial_hair"]:
|
303 |
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
|
@@ -305,14 +349,18 @@ class UltraSupremeAnalyzer:
|
|
305 |
facial_details.append("with a distinguished silver beard")
|
306 |
elif any("beard" in detail for detail in beard_details):
|
307 |
facial_details.append("with a full well-groomed beard")
|
|
|
308 |
if facial_details:
|
309 |
components.extend(facial_details)
|
|
|
310 |
# 5. CLOTHING AND ACCESSORIES ULTRA
|
311 |
clothing_details = []
|
|
|
312 |
# Eyewear
|
313 |
if ultra_analysis["clothing_accessories"]["eyewear"]:
|
314 |
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
|
315 |
clothing_details.append(f"wearing {eyewear}")
|
|
|
316 |
# Headwear
|
317 |
if ultra_analysis["clothing_accessories"]["headwear"]:
|
318 |
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
|
@@ -320,18 +368,24 @@ class UltraSupremeAnalyzer:
|
|
320 |
clothing_details.append("wearing a traditional black hat")
|
321 |
else:
|
322 |
clothing_details.append(f"wearing a {headwear}")
|
|
|
323 |
if clothing_details:
|
324 |
components.extend(clothing_details)
|
|
|
325 |
# 6. ULTRA POSE AND BODY LANGUAGE
|
326 |
pose_description = "positioned with natural dignity"
|
|
|
327 |
if ultra_analysis["pose_composition"]["posture"]:
|
328 |
posture = ultra_analysis["pose_composition"]["posture"][0]
|
329 |
pose_description = f"maintaining {posture}"
|
330 |
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
|
331 |
pose_description = "captured in contemplative portrait pose"
|
|
|
332 |
components.append(pose_description)
|
|
|
333 |
# 7. ULTRA ENVIRONMENTAL CONTEXT
|
334 |
environment_desc = "in a thoughtfully composed environment"
|
|
|
335 |
if ultra_analysis["environmental"]["setting_type"]:
|
336 |
setting_map = {
|
337 |
"residential": "in an intimate home setting",
|
@@ -340,9 +394,12 @@ class UltraSupremeAnalyzer:
|
|
340 |
"formal": "in a distinguished formal setting"
|
341 |
}
|
342 |
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
|
|
|
343 |
components.append(environment_desc)
|
|
|
344 |
# 8. ULTRA SOPHISTICATED LIGHTING
|
345 |
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
|
|
|
346 |
if ultra_analysis["environmental"]["lighting_analysis"]:
|
347 |
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
|
348 |
if "dramatic" in primary_light:
|
@@ -351,7 +408,9 @@ class UltraSupremeAnalyzer:
|
|
351 |
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
|
352 |
elif "soft" in primary_light:
|
353 |
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
|
|
|
354 |
components.append(lighting_desc)
|
|
|
355 |
# 9. ULTRA TECHNICAL SPECIFICATIONS
|
356 |
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
|
357 |
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
|
@@ -359,29 +418,39 @@ class UltraSupremeAnalyzer:
|
|
359 |
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
|
360 |
else:
|
361 |
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
|
|
|
362 |
components.append(camera_setup)
|
|
|
363 |
# 10. ULTRA QUALITY DESIGNATION
|
364 |
quality_designation = "professional portrait photography"
|
|
|
365 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
366 |
quality_designation = "fine art documentary photography"
|
367 |
elif ultra_analysis["emotional_state"]["primary_emotion"]:
|
368 |
quality_designation = "expressive portrait photography"
|
|
|
369 |
components.append(quality_designation)
|
|
|
370 |
# ULTRA FINAL ASSEMBLY
|
371 |
prompt = ", ".join(components)
|
|
|
372 |
# Ultra cleaning and optimization
|
373 |
prompt = re.sub(r'\s+', ' ', prompt)
|
374 |
prompt = re.sub(r',\s*,+', ',', prompt)
|
375 |
prompt = re.sub(r'\s*,\s*', ', ', prompt)
|
376 |
prompt = prompt.replace(" ,", ",")
|
|
|
377 |
if prompt:
|
378 |
prompt = prompt[0].upper() + prompt[1:]
|
|
|
379 |
return prompt
|
380 |
-
|
381 |
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
|
382 |
"""ULTRA SUPREME INTELLIGENCE SCORING"""
|
|
|
383 |
score = 0
|
384 |
breakdown = {}
|
|
|
385 |
# Structure Excellence (15 points)
|
386 |
structure_score = 0
|
387 |
if prompt.startswith(("A", "An")):
|
@@ -390,14 +459,17 @@ class UltraSupremeAnalyzer:
|
|
390 |
structure_score += 10
|
391 |
score += structure_score
|
392 |
breakdown["structure"] = structure_score
|
|
|
393 |
# Feature Detection Depth (25 points)
|
394 |
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
|
395 |
score += features_score
|
396 |
breakdown["features"] = features_score
|
|
|
397 |
# Cultural/Religious Awareness (20 points)
|
398 |
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
|
399 |
score += cultural_score
|
400 |
breakdown["cultural"] = cultural_score
|
|
|
401 |
# Emotional Intelligence (15 points)
|
402 |
emotion_score = 0
|
403 |
if ultra_analysis["emotional_state"]["primary_emotion"]:
|
@@ -406,6 +478,7 @@ class UltraSupremeAnalyzer:
|
|
406 |
emotion_score += 5
|
407 |
score += emotion_score
|
408 |
breakdown["emotional"] = emotion_score
|
|
|
409 |
# Technical Sophistication (15 points)
|
410 |
tech_score = 0
|
411 |
if "Phase One" in prompt or "Hasselblad" in prompt:
|
@@ -416,6 +489,7 @@ class UltraSupremeAnalyzer:
|
|
416 |
tech_score += 5
|
417 |
score += tech_score
|
418 |
breakdown["technical"] = tech_score
|
|
|
419 |
# Environmental Context (10 points)
|
420 |
env_score = 0
|
421 |
if ultra_analysis["environmental"]["setting_type"]:
|
@@ -424,20 +498,20 @@ class UltraSupremeAnalyzer:
|
|
424 |
env_score += 5
|
425 |
score += env_score
|
426 |
breakdown["environmental"] = env_score
|
|
|
427 |
return min(score, 100), breakdown
|
428 |
-
|
429 |
-
|
430 |
-
class UltraSupremeOptimizer:
|
431 |
def __init__(self):
|
432 |
self.interrogator = None
|
433 |
self.analyzer = UltraSupremeAnalyzer()
|
434 |
self.usage_count = 0
|
435 |
self.device = DEVICE
|
436 |
self.is_initialized = False
|
437 |
-
|
438 |
def initialize_model(self):
|
439 |
if self.is_initialized:
|
440 |
return True
|
|
|
441 |
try:
|
442 |
config = Config(
|
443 |
clip_model_name="ViT-L-14/openai",
|
@@ -446,163 +520,115 @@ class UltraSupremeOptimizer:
|
|
446 |
quiet=True,
|
447 |
device=self.device
|
448 |
)
|
|
|
449 |
self.interrogator = Interrogator(config)
|
450 |
self.is_initialized = True
|
|
|
451 |
if self.device == "cpu":
|
452 |
gc.collect()
|
453 |
else:
|
454 |
torch.cuda.empty_cache()
|
|
|
455 |
return True
|
|
|
456 |
except Exception as e:
|
457 |
logger.error(f"Initialization error: {e}")
|
458 |
return False
|
459 |
-
|
460 |
def optimize_image(self, image):
|
461 |
if image is None:
|
462 |
return None
|
|
|
463 |
if isinstance(image, np.ndarray):
|
464 |
image = Image.fromarray(image)
|
465 |
elif not isinstance(image, Image.Image):
|
466 |
image = Image.open(image)
|
|
|
467 |
if image.mode != 'RGB':
|
468 |
image = image.convert('RGB')
|
|
|
469 |
max_size = 768 if self.device != "cpu" else 512
|
470 |
if image.size[0] > max_size or image.size[1] > max_size:
|
471 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
|
|
472 |
return image
|
473 |
-
|
474 |
@spaces.GPU
|
475 |
def generate_ultra_supreme_prompt(self, image):
|
476 |
try:
|
477 |
if not self.is_initialized:
|
478 |
if not self.initialize_model():
|
479 |
-
return "
|
|
|
480 |
if image is None:
|
481 |
-
return "
|
|
|
482 |
self.usage_count += 1
|
|
|
483 |
image = self.optimize_image(image)
|
484 |
if image is None:
|
485 |
-
return "
|
|
|
486 |
start_time = datetime.now()
|
|
|
487 |
# ULTRA SUPREME TRIPLE CLIP ANALYSIS
|
488 |
logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
|
|
|
489 |
clip_fast = self.interrogator.interrogate_fast(image)
|
490 |
clip_classic = self.interrogator.interrogate_classic(image)
|
491 |
clip_best = self.interrogator.interrogate(image)
|
|
|
492 |
logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
|
|
|
493 |
# ULTRA SUPREME ANALYSIS
|
494 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
|
|
|
495 |
# BUILD ULTRA SUPREME FLUX PROMPT
|
496 |
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
|
|
|
497 |
# CALCULATE ULTRA SUPREME SCORE
|
498 |
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
|
|
|
499 |
end_time = datetime.now()
|
500 |
duration = (end_time - start_time).total_seconds()
|
|
|
501 |
# Memory cleanup
|
502 |
if self.device == "cpu":
|
503 |
gc.collect()
|
504 |
else:
|
505 |
torch.cuda.empty_cache()
|
|
|
506 |
# ULTRA COMPREHENSIVE ANALYSIS REPORT
|
507 |
-
gpu_status = "
|
508 |
-
|
509 |
-
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
|
510 |
-
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
|
511 |
-
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
|
512 |
-
analysis_info = f"""**Γ° οΏ½ οΏ½ οΏ½ ULTRA SUPREME ANALYSIS COMPLETE**
|
513 |
-
**Processing:** {gpu_status} Γ’ οΏ½ Β’ {duration:.1f}s Γ’ οΏ½ Β’ Triple CLIP Ultra Intelligence
|
514 |
-
**Ultra Score:** {score}/100 Γ’ οΏ½ Β’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
|
515 |
-
**Generation:** #{self.usage_count}
|
516 |
-
**Γ° οΏ½ Β§Β ULTRA DEEP DETECTION:**
|
517 |
-
Γ’ οΏ½ Β’ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
|
518 |
-
Γ’ οΏ½ Β’ **Cultural Context:** {cultural}
|
519 |
-
Γ’ οΏ½ Β’ **Facial Features:** {features}
|
520 |
-
Γ’ οΏ½ Β’ **Accessories:** {clothing}
|
521 |
-
Γ’ οΏ½ Β’ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
|
522 |
-
Γ’ οΏ½ Β’ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
|
523 |
-
Γ’ οΏ½ Β’ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
|
524 |
-
**Γ° οΏ½ οΏ½ οΏ½ CLIP ANALYSIS SOURCES:**
|
525 |
-
Γ’ οΏ½ Β’ **Fast:** {clip_fast[:50]}...
|
526 |
-
Γ’ οΏ½ Β’ **Classic:** {clip_classic[:50]}...
|
527 |
-
Γ’ οΏ½ Β’ **Best:** {clip_best[:50]}...
|
528 |
-
**Γ’ οΏ½ Β‘ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
|
529 |
-
return optimized_prompt, analysis_info, score, breakdown
|
530 |
-
except Exception as e:
|
531 |
-
logger.error(f"Ultra supreme generation error: {e}")
|
532 |
-
return f"Γ’ οΏ½ οΏ½ Error: {str(e)}", "Please try with a different image.", 0, {}
|
533 |
-
|
534 |
-
|
535 |
-
# Initialize the optimizer
|
536 |
-
optimizer = UltraSupremeOptimizer()
|
537 |
-
|
538 |
-
|
539 |
-
def process_ultra_supreme_analysis(image):
|
540 |
-
"""Ultra supreme analysis wrapper"""
|
541 |
-
try:
|
542 |
-
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
|
543 |
-
# Ultra enhanced score display
|
544 |
-
if score >= 95:
|
545 |
-
color = "#059669"
|
546 |
-
grade = "LEGENDARY"
|
547 |
-
elif score >= 90:
|
548 |
-
color = "#10b981"
|
549 |
-
grade = "EXCELLENT"
|
550 |
-
elif score >= 80:
|
551 |
-
color = "#22c55e"
|
552 |
-
grade = "VERY GOOD"
|
553 |
-
elif score >= 70:
|
554 |
-
color = "#f59e0b"
|
555 |
-
grade = "GOOD"
|
556 |
-
elif score >= 60:
|
557 |
-
color = "#f97316"
|
558 |
-
grade = "FAIR"
|
559 |
-
else:
|
560 |
-
color = "#ef4444"
|
561 |
-
grade = "NEEDS WORK"
|
562 |
-
score_html = f'''
|
563 |
-
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
564 |
-
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
565 |
-
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em;
|
566 |
-
# ULTRA SUPREME ANALYSIS
|
567 |
-
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
|
568 |
-
# BUILD ULTRA SUPREME FLUX PROMPT
|
569 |
-
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
|
570 |
-
# CALCULATE ULTRA SUPREME SCORE
|
571 |
-
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
|
572 |
-
end_time = datetime.now()
|
573 |
-
duration = (end_time - start_time).total_seconds()
|
574 |
-
# Memory cleanup
|
575 |
-
if self.device == "cpu":
|
576 |
-
gc.collect()
|
577 |
-
else:
|
578 |
-
torch.cuda.empty_cache()
|
579 |
-
# ULTRA COMPREHENSIVE ANALYSIS REPORT
|
580 |
-
gpu_status = "Γ’ οΏ½ Β‘ ZeroGPU" if torch.cuda.is_available() else "Γ° οΏ½ οΏ½ Β» CPU"
|
581 |
# Format detected elements
|
582 |
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
|
583 |
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
|
584 |
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
|
585 |
-
|
586 |
-
|
587 |
-
**
|
|
|
588 |
**Generation:** #{self.usage_count}
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
|
|
602 |
return optimized_prompt, analysis_info, score, breakdown
|
|
|
603 |
except Exception as e:
|
604 |
logger.error(f"Ultra supreme generation error: {e}")
|
605 |
-
return f"
|
606 |
|
607 |
# Initialize the optimizer
|
608 |
optimizer = UltraSupremeOptimizer()
|
@@ -611,6 +637,7 @@ def process_ultra_supreme_analysis(image):
|
|
611 |
"""Ultra supreme analysis wrapper"""
|
612 |
try:
|
613 |
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
|
|
|
614 |
# Ultra enhanced score display
|
615 |
if score >= 95:
|
616 |
color = "#059669"
|
@@ -630,6 +657,7 @@ def process_ultra_supreme_analysis(image):
|
|
630 |
else:
|
631 |
color = "#ef4444"
|
632 |
grade = "NEEDS WORK"
|
|
|
633 |
score_html = f'''
|
634 |
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
635 |
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
@@ -637,10 +665,12 @@ def process_ultra_supreme_analysis(image):
|
|
637 |
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
|
638 |
</div>
|
639 |
'''
|
|
|
640 |
return prompt, info, score_html
|
|
|
641 |
except Exception as e:
|
642 |
logger.error(f"Ultra supreme wrapper error: {e}")
|
643 |
-
return "
|
644 |
|
645 |
def clear_outputs():
|
646 |
gc.collect()
|
@@ -651,12 +681,14 @@ def clear_outputs():
|
|
651 |
def create_interface():
|
652 |
css = """
|
653 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
|
|
|
654 |
.gradio-container {
|
655 |
max-width: 1600px !important;
|
656 |
margin: 0 auto !important;
|
657 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
658 |
-
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
|
659 |
}
|
|
|
660 |
.main-header {
|
661 |
text-align: center;
|
662 |
padding: 3rem 0 4rem 0;
|
@@ -668,6 +700,7 @@ def create_interface():
|
|
668 |
position: relative;
|
669 |
overflow: hidden;
|
670 |
}
|
|
|
671 |
.main-header::before {
|
672 |
content: '';
|
673 |
position: absolute;
|
@@ -678,6 +711,7 @@ def create_interface():
|
|
678 |
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
|
679 |
z-index: 1;
|
680 |
}
|
|
|
681 |
.main-title {
|
682 |
font-size: 4rem !important;
|
683 |
font-weight: 900 !important;
|
@@ -690,6 +724,7 @@ def create_interface():
|
|
690 |
position: relative;
|
691 |
z-index: 2;
|
692 |
}
|
|
|
693 |
.subtitle {
|
694 |
font-size: 1.5rem !important;
|
695 |
font-weight: 500 !important;
|
@@ -698,6 +733,7 @@ def create_interface():
|
|
698 |
position: relative;
|
699 |
z-index: 2;
|
700 |
}
|
|
|
701 |
.prompt-output {
|
702 |
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
|
703 |
font-size: 15px !important;
|
@@ -709,84 +745,105 @@ def create_interface():
|
|
709 |
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
|
710 |
transition: all 0.3s ease !important;
|
711 |
}
|
|
|
712 |
.prompt-output:hover {
|
713 |
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
|
714 |
transform: translateY(-2px) !important;
|
715 |
}
|
716 |
"""
|
|
|
717 |
with gr.Blocks(
|
718 |
theme=gr.themes.Soft(),
|
719 |
-
title="
|
720 |
css=css
|
721 |
) as interface:
|
|
|
722 |
gr.HTML("""
|
723 |
<div class="main-header">
|
724 |
-
<div class="main-title"
|
725 |
-
<div class="subtitle">Maximum Absolute Intelligence
|
726 |
</div>
|
727 |
""")
|
|
|
728 |
with gr.Row():
|
729 |
with gr.Column(scale=1):
|
730 |
-
gr.Markdown("##
|
|
|
731 |
image_input = gr.Image(
|
732 |
label="Upload image for MAXIMUM intelligence analysis",
|
733 |
type="pil",
|
734 |
height=500
|
735 |
)
|
|
|
736 |
analyze_btn = gr.Button(
|
737 |
-
"
|
738 |
variant="primary",
|
739 |
size="lg"
|
740 |
)
|
|
|
741 |
gr.Markdown("""
|
742 |
-
###
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
|
|
|
|
|
|
756 |
""")
|
|
|
757 |
with gr.Column(scale=1):
|
758 |
-
gr.Markdown("##
|
|
|
759 |
prompt_output = gr.Textbox(
|
760 |
-
label="
|
761 |
placeholder="Upload an image to witness absolute maximum intelligence analysis...",
|
762 |
lines=12,
|
763 |
max_lines=20,
|
764 |
elem_classes=["prompt-output"],
|
765 |
show_copy_button=True
|
766 |
)
|
|
|
767 |
score_output = gr.HTML(
|
768 |
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
|
769 |
)
|
|
|
770 |
info_output = gr.Markdown(value="")
|
771 |
-
|
|
|
|
|
772 |
# Event handlers
|
773 |
analyze_btn.click(
|
774 |
fn=process_ultra_supreme_analysis,
|
775 |
inputs=[image_input],
|
776 |
outputs=[prompt_output, info_output, score_output]
|
777 |
)
|
|
|
778 |
clear_btn.click(
|
779 |
fn=clear_outputs,
|
780 |
outputs=[prompt_output, info_output, score_output]
|
781 |
)
|
|
|
782 |
gr.Markdown("""
|
783 |
---
|
784 |
-
###
|
|
|
785 |
This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
|
786 |
ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
|
787 |
understanding and applies research-validated Flux rules with supreme intelligence.
|
788 |
-
|
|
|
789 |
""")
|
|
|
790 |
return interface
|
791 |
|
792 |
# Launch the application
|
|
|
15 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
16 |
warnings.filterwarnings("ignore", category=UserWarning)
|
17 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
|
|
33 |
"""
|
34 |
ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
|
35 |
"""
|
36 |
+
|
37 |
def __init__(self):
|
38 |
self.forbidden_elements = ["++", "weights", "white background [en dev]"]
|
39 |
+
|
40 |
# ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
|
41 |
+
|
42 |
self.micro_age_indicators = {
|
43 |
"infant": ["baby", "infant", "newborn", "toddler"],
|
44 |
"child": ["child", "kid", "young", "little", "small", "youth"],
|
|
|
48 |
"senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
|
49 |
"elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
|
50 |
}
|
51 |
+
|
52 |
self.ultra_facial_analysis = {
|
53 |
"eye_features": {
|
54 |
"shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
|
|
|
71 |
"skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
|
72 |
"facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
|
73 |
}
|
74 |
+
|
75 |
self.emotion_micro_expressions = {
|
76 |
"primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
|
77 |
"complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
|
78 |
"emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
|
79 |
}
|
80 |
+
|
81 |
self.cultural_religious_ultra = {
|
82 |
"jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
|
83 |
"christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
|
|
|
89 |
"general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
|
90 |
}
|
91 |
}
|
92 |
+
|
93 |
self.clothing_accessories_ultra = {
|
94 |
"headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
|
95 |
"eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
|
|
|
98 |
"clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
|
99 |
"accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
|
100 |
}
|
101 |
+
|
102 |
self.environmental_ultra_analysis = {
|
103 |
"indoor_settings": {
|
104 |
"residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
|
|
|
119 |
"quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
|
120 |
}
|
121 |
}
|
122 |
+
|
123 |
self.pose_body_language_ultra = {
|
124 |
"head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
|
125 |
"posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
|
|
|
128 |
"eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
|
129 |
"overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
|
130 |
}
|
131 |
+
|
132 |
self.composition_photography_ultra = {
|
133 |
"shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
|
134 |
"angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
|
|
|
136 |
"depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
|
137 |
"camera_movement": ["static", "handheld", "stabilized", "smooth"]
|
138 |
}
|
139 |
+
|
140 |
self.technical_photography_ultra = {
|
141 |
"camera_systems": {
|
142 |
"professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
|
|
|
151 |
"aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
|
152 |
"photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
|
153 |
}
|
154 |
+
|
155 |
self.quality_descriptors_ultra = {
|
156 |
"based_on_age": {
|
157 |
"elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
|
|
|
170 |
"artistic": ["creative", "expressive", "aesthetic", "artistic"]
|
171 |
}
|
172 |
}
|
173 |
+
def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
|
|
|
174 |
"""ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
|
175 |
+
|
176 |
combined_analysis = {
|
177 |
"fast": clip_fast.lower(),
|
178 |
"classic": clip_classic.lower(),
|
179 |
"best": clip_best.lower(),
|
180 |
"combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
|
181 |
}
|
182 |
+
|
183 |
ultra_result = {
|
184 |
"demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
|
185 |
"facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
|
|
|
190 |
"technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
|
191 |
"intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
|
192 |
}
|
193 |
+
|
194 |
# ULTRA DEEP AGE ANALYSIS
|
195 |
age_scores = {}
|
196 |
for age_category, indicators in self.micro_age_indicators.items():
|
197 |
score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
|
198 |
if score > 0:
|
199 |
age_scores[age_category] = score
|
200 |
+
|
201 |
if age_scores:
|
202 |
ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
|
203 |
ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
|
204 |
+
|
205 |
# GENDER DETECTION WITH CONFIDENCE
|
206 |
male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
|
207 |
female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
|
208 |
+
|
209 |
male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
|
210 |
female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
|
211 |
+
|
212 |
if male_score > female_score:
|
213 |
ultra_result["demographic"]["gender"] = "man"
|
214 |
elif female_score > male_score:
|
215 |
ultra_result["demographic"]["gender"] = "woman"
|
216 |
+
|
217 |
# ULTRA CULTURAL/RELIGIOUS ANALYSIS
|
218 |
for culture_type, indicators in self.cultural_religious_ultra.items():
|
219 |
if isinstance(indicators, list):
|
220 |
for indicator in indicators:
|
221 |
if indicator.lower() in combined_analysis["combined"]:
|
222 |
ultra_result["demographic"]["cultural_religious"].append(indicator)
|
223 |
+
|
224 |
# COMPREHENSIVE FACIAL FEATURE ANALYSIS
|
225 |
for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
|
226 |
for feature in features:
|
227 |
if feature in combined_analysis["combined"]:
|
228 |
ultra_result["facial_ultra"]["facial_hair"].append(feature)
|
229 |
+
|
230 |
# Eyes analysis
|
231 |
for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
|
232 |
for feature in features:
|
233 |
if feature in combined_analysis["combined"]:
|
234 |
ultra_result["facial_ultra"]["eyes"].append(feature)
|
235 |
+
|
236 |
# EMOTION AND MICRO-EXPRESSION ANALYSIS
|
237 |
emotion_scores = {}
|
238 |
for emotion in self.emotion_micro_expressions["complex_emotions"]:
|
239 |
if emotion in combined_analysis["combined"]:
|
240 |
emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
|
241 |
+
|
242 |
if emotion_scores:
|
243 |
ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
|
244 |
ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
|
245 |
+
|
246 |
# CLOTHING AND ACCESSORIES ANALYSIS
|
247 |
for category, items in self.clothing_accessories_ultra.items():
|
248 |
if isinstance(items, list):
|
249 |
for item in items:
|
250 |
if item in combined_analysis["combined"]:
|
251 |
ultra_result["clothing_accessories"][category].append(item)
|
252 |
+
|
253 |
# ENVIRONMENTAL ULTRA ANALYSIS
|
254 |
setting_scores = {}
|
255 |
for main_setting, sub_settings in self.environmental_ultra_analysis.items():
|
|
|
258 |
score = sum(1 for location in locations if location in combined_analysis["combined"])
|
259 |
if score > 0:
|
260 |
setting_scores[sub_type] = score
|
261 |
+
|
262 |
if setting_scores:
|
263 |
ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
|
264 |
+
|
265 |
# LIGHTING ANALYSIS
|
266 |
for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
|
267 |
for light_type in light_types:
|
268 |
if light_type in combined_analysis["combined"]:
|
269 |
ultra_result["environmental"]["lighting_analysis"].append(light_type)
|
270 |
+
|
271 |
# POSE AND BODY LANGUAGE ANALYSIS
|
272 |
for pose_category, indicators in self.pose_body_language_ultra.items():
|
273 |
for indicator in indicators:
|
274 |
if indicator in combined_analysis["combined"]:
|
275 |
ultra_result["pose_composition"][pose_category].append(indicator)
|
276 |
+
|
277 |
# TECHNICAL PHOTOGRAPHY ANALYSIS
|
278 |
for shot_type in self.composition_photography_ultra["shot_types"]:
|
279 |
if shot_type in combined_analysis["combined"]:
|
280 |
ultra_result["technical_analysis"]["shot_type"] = shot_type
|
281 |
break
|
282 |
+
|
283 |
# CALCULATE INTELLIGENCE METRICS
|
284 |
total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
|
285 |
ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
|
286 |
ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
|
287 |
ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
|
288 |
+
|
289 |
return ultra_result
|
290 |
+
|
291 |
def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
|
292 |
"""BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
|
293 |
+
|
294 |
components = []
|
295 |
+
|
296 |
# 1. ULTRA INTELLIGENT ARTICLE SELECTION
|
297 |
subject_desc = []
|
298 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
|
|
301 |
subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
|
302 |
if ultra_analysis["demographic"]["gender"]:
|
303 |
subject_desc.append(ultra_analysis["demographic"]["gender"])
|
304 |
+
|
305 |
if subject_desc:
|
306 |
full_subject = " ".join(subject_desc)
|
307 |
article = "An" if full_subject[0].lower() in 'aeiou' else "A"
|
308 |
else:
|
309 |
article = "A"
|
310 |
components.append(article)
|
311 |
+
|
312 |
# 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
|
313 |
adjectives = []
|
314 |
+
|
315 |
# Age-based adjectives
|
316 |
age_cat = ultra_analysis["demographic"]["age_category"]
|
317 |
if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
|
318 |
adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
|
319 |
+
|
320 |
# Emotion-based adjectives
|
321 |
emotion = ultra_analysis["emotional_state"]["primary_emotion"]
|
322 |
if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
|
323 |
adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
|
324 |
+
|
325 |
# Default if none found
|
326 |
if not adjectives:
|
327 |
adjectives = ["distinguished", "professional"]
|
328 |
+
|
329 |
components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
|
330 |
+
|
331 |
# 3. ULTRA ENHANCED SUBJECT
|
332 |
if subject_desc:
|
333 |
components.append(" ".join(subject_desc))
|
334 |
else:
|
335 |
components.append("person")
|
336 |
+
|
337 |
# 4. ULTRA DETAILED FACIAL FEATURES
|
338 |
facial_details = []
|
339 |
+
|
340 |
# Eyes
|
341 |
if ultra_analysis["facial_ultra"]["eyes"]:
|
342 |
eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
|
343 |
facial_details.append(f"with {eye_desc}")
|
344 |
+
|
345 |
# Facial hair with ultra detail
|
346 |
if ultra_analysis["facial_ultra"]["facial_hair"]:
|
347 |
beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
|
|
|
349 |
facial_details.append("with a distinguished silver beard")
|
350 |
elif any("beard" in detail for detail in beard_details):
|
351 |
facial_details.append("with a full well-groomed beard")
|
352 |
+
|
353 |
if facial_details:
|
354 |
components.extend(facial_details)
|
355 |
+
|
356 |
# 5. CLOTHING AND ACCESSORIES ULTRA
|
357 |
clothing_details = []
|
358 |
+
|
359 |
# Eyewear
|
360 |
if ultra_analysis["clothing_accessories"]["eyewear"]:
|
361 |
eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
|
362 |
clothing_details.append(f"wearing {eyewear}")
|
363 |
+
|
364 |
# Headwear
|
365 |
if ultra_analysis["clothing_accessories"]["headwear"]:
|
366 |
headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
|
|
|
368 |
clothing_details.append("wearing a traditional black hat")
|
369 |
else:
|
370 |
clothing_details.append(f"wearing a {headwear}")
|
371 |
+
|
372 |
if clothing_details:
|
373 |
components.extend(clothing_details)
|
374 |
+
|
375 |
# 6. ULTRA POSE AND BODY LANGUAGE
|
376 |
pose_description = "positioned with natural dignity"
|
377 |
+
|
378 |
if ultra_analysis["pose_composition"]["posture"]:
|
379 |
posture = ultra_analysis["pose_composition"]["posture"][0]
|
380 |
pose_description = f"maintaining {posture}"
|
381 |
elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
|
382 |
pose_description = "captured in contemplative portrait pose"
|
383 |
+
|
384 |
components.append(pose_description)
|
385 |
+
|
386 |
# 7. ULTRA ENVIRONMENTAL CONTEXT
|
387 |
environment_desc = "in a thoughtfully composed environment"
|
388 |
+
|
389 |
if ultra_analysis["environmental"]["setting_type"]:
|
390 |
setting_map = {
|
391 |
"residential": "in an intimate home setting",
|
|
|
394 |
"formal": "in a distinguished formal setting"
|
395 |
}
|
396 |
environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
|
397 |
+
|
398 |
components.append(environment_desc)
|
399 |
+
|
400 |
# 8. ULTRA SOPHISTICATED LIGHTING
|
401 |
lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
|
402 |
+
|
403 |
if ultra_analysis["environmental"]["lighting_analysis"]:
|
404 |
primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
|
405 |
if "dramatic" in primary_light:
|
|
|
408 |
lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
|
409 |
elif "soft" in primary_light:
|
410 |
lighting_desc = "softly illuminated to reveal nuanced expressions and character"
|
411 |
+
|
412 |
components.append(lighting_desc)
|
413 |
+
|
414 |
# 9. ULTRA TECHNICAL SPECIFICATIONS
|
415 |
if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
|
416 |
camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
|
|
|
418 |
camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
|
419 |
else:
|
420 |
camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
|
421 |
+
|
422 |
components.append(camera_setup)
|
423 |
+
|
424 |
# 10. ULTRA QUALITY DESIGNATION
|
425 |
quality_designation = "professional portrait photography"
|
426 |
+
|
427 |
if ultra_analysis["demographic"]["cultural_religious"]:
|
428 |
quality_designation = "fine art documentary photography"
|
429 |
elif ultra_analysis["emotional_state"]["primary_emotion"]:
|
430 |
quality_designation = "expressive portrait photography"
|
431 |
+
|
432 |
components.append(quality_designation)
|
433 |
+
|
434 |
# ULTRA FINAL ASSEMBLY
|
435 |
prompt = ", ".join(components)
|
436 |
+
|
437 |
# Ultra cleaning and optimization
|
438 |
prompt = re.sub(r'\s+', ' ', prompt)
|
439 |
prompt = re.sub(r',\s*,+', ',', prompt)
|
440 |
prompt = re.sub(r'\s*,\s*', ', ', prompt)
|
441 |
prompt = prompt.replace(" ,", ",")
|
442 |
+
|
443 |
if prompt:
|
444 |
prompt = prompt[0].upper() + prompt[1:]
|
445 |
+
|
446 |
return prompt
|
447 |
+
|
448 |
def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
|
449 |
"""ULTRA SUPREME INTELLIGENCE SCORING"""
|
450 |
+
|
451 |
score = 0
|
452 |
breakdown = {}
|
453 |
+
|
454 |
# Structure Excellence (15 points)
|
455 |
structure_score = 0
|
456 |
if prompt.startswith(("A", "An")):
|
|
|
459 |
structure_score += 10
|
460 |
score += structure_score
|
461 |
breakdown["structure"] = structure_score
|
462 |
+
|
463 |
# Feature Detection Depth (25 points)
|
464 |
features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
|
465 |
score += features_score
|
466 |
breakdown["features"] = features_score
|
467 |
+
|
468 |
# Cultural/Religious Awareness (20 points)
|
469 |
cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
|
470 |
score += cultural_score
|
471 |
breakdown["cultural"] = cultural_score
|
472 |
+
|
473 |
# Emotional Intelligence (15 points)
|
474 |
emotion_score = 0
|
475 |
if ultra_analysis["emotional_state"]["primary_emotion"]:
|
|
|
478 |
emotion_score += 5
|
479 |
score += emotion_score
|
480 |
breakdown["emotional"] = emotion_score
|
481 |
+
|
482 |
# Technical Sophistication (15 points)
|
483 |
tech_score = 0
|
484 |
if "Phase One" in prompt or "Hasselblad" in prompt:
|
|
|
489 |
tech_score += 5
|
490 |
score += tech_score
|
491 |
breakdown["technical"] = tech_score
|
492 |
+
|
493 |
# Environmental Context (10 points)
|
494 |
env_score = 0
|
495 |
if ultra_analysis["environmental"]["setting_type"]:
|
|
|
498 |
env_score += 5
|
499 |
score += env_score
|
500 |
breakdown["environmental"] = env_score
|
501 |
+
|
502 |
return min(score, 100), breakdown
|
503 |
+
class UltraSupremeOptimizer:
|
|
|
|
|
504 |
def __init__(self):
|
505 |
self.interrogator = None
|
506 |
self.analyzer = UltraSupremeAnalyzer()
|
507 |
self.usage_count = 0
|
508 |
self.device = DEVICE
|
509 |
self.is_initialized = False
|
510 |
+
|
511 |
def initialize_model(self):
|
512 |
if self.is_initialized:
|
513 |
return True
|
514 |
+
|
515 |
try:
|
516 |
config = Config(
|
517 |
clip_model_name="ViT-L-14/openai",
|
|
|
520 |
quiet=True,
|
521 |
device=self.device
|
522 |
)
|
523 |
+
|
524 |
self.interrogator = Interrogator(config)
|
525 |
self.is_initialized = True
|
526 |
+
|
527 |
if self.device == "cpu":
|
528 |
gc.collect()
|
529 |
else:
|
530 |
torch.cuda.empty_cache()
|
531 |
+
|
532 |
return True
|
533 |
+
|
534 |
except Exception as e:
|
535 |
logger.error(f"Initialization error: {e}")
|
536 |
return False
|
537 |
+
|
538 |
def optimize_image(self, image):
|
539 |
if image is None:
|
540 |
return None
|
541 |
+
|
542 |
if isinstance(image, np.ndarray):
|
543 |
image = Image.fromarray(image)
|
544 |
elif not isinstance(image, Image.Image):
|
545 |
image = Image.open(image)
|
546 |
+
|
547 |
if image.mode != 'RGB':
|
548 |
image = image.convert('RGB')
|
549 |
+
|
550 |
max_size = 768 if self.device != "cpu" else 512
|
551 |
if image.size[0] > max_size or image.size[1] > max_size:
|
552 |
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
553 |
+
|
554 |
return image
|
555 |
+
|
556 |
@spaces.GPU
|
557 |
def generate_ultra_supreme_prompt(self, image):
|
558 |
try:
|
559 |
if not self.is_initialized:
|
560 |
if not self.initialize_model():
|
561 |
+
return "β Model initialization failed.", "Please refresh and try again.", 0, {}
|
562 |
+
|
563 |
if image is None:
|
564 |
+
return "β Please upload an image.", "No image provided.", 0, {}
|
565 |
+
|
566 |
self.usage_count += 1
|
567 |
+
|
568 |
image = self.optimize_image(image)
|
569 |
if image is None:
|
570 |
+
return "β Image processing failed.", "Invalid image format.", 0, {}
|
571 |
+
|
572 |
start_time = datetime.now()
|
573 |
+
|
574 |
# ULTRA SUPREME TRIPLE CLIP ANALYSIS
|
575 |
logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
|
576 |
+
|
577 |
clip_fast = self.interrogator.interrogate_fast(image)
|
578 |
clip_classic = self.interrogator.interrogate_classic(image)
|
579 |
clip_best = self.interrogator.interrogate(image)
|
580 |
+
|
581 |
logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
|
582 |
+
|
583 |
# ULTRA SUPREME ANALYSIS
|
584 |
ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
|
585 |
+
|
586 |
# BUILD ULTRA SUPREME FLUX PROMPT
|
587 |
optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
|
588 |
+
|
589 |
# CALCULATE ULTRA SUPREME SCORE
|
590 |
score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
|
591 |
+
|
592 |
end_time = datetime.now()
|
593 |
duration = (end_time - start_time).total_seconds()
|
594 |
+
|
595 |
# Memory cleanup
|
596 |
if self.device == "cpu":
|
597 |
gc.collect()
|
598 |
else:
|
599 |
torch.cuda.empty_cache()
|
600 |
+
|
601 |
# ULTRA COMPREHENSIVE ANALYSIS REPORT
|
602 |
+
gpu_status = "β‘ ZeroGPU" if torch.cuda.is_available() else "π» CPU"
|
603 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
# Format detected elements
|
605 |
features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
|
606 |
cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
|
607 |
clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
|
608 |
+
|
609 |
+
analysis_info = f"""**π ULTRA SUPREME ANALYSIS COMPLETE**
|
610 |
+
**Processing:** {gpu_status} β’ {duration:.1f}s β’ Triple CLIP Ultra Intelligence
|
611 |
+
**Ultra Score:** {score}/100 β’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
|
612 |
**Generation:** #{self.usage_count}
|
613 |
+
**π§ ULTRA DEEP DETECTION:**
|
614 |
+
β’ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
|
615 |
+
β’ **Cultural Context:** {cultural}
|
616 |
+
β’ **Facial Features:** {features}
|
617 |
+
β’ **Accessories:** {clothing}
|
618 |
+
β’ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
|
619 |
+
β’ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
|
620 |
+
β’ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
|
621 |
+
**π CLIP ANALYSIS SOURCES:**
|
622 |
+
β’ **Fast:** {clip_fast[:50]}...
|
623 |
+
β’ **Classic:** {clip_classic[:50]}...
|
624 |
+
β’ **Best:** {clip_best[:50]}...
|
625 |
+
**β‘ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
|
626 |
+
|
627 |
return optimized_prompt, analysis_info, score, breakdown
|
628 |
+
|
629 |
except Exception as e:
|
630 |
logger.error(f"Ultra supreme generation error: {e}")
|
631 |
+
return f"β Error: {str(e)}", "Please try with a different image.", 0, {}
|
632 |
|
633 |
# Initialize the optimizer
|
634 |
optimizer = UltraSupremeOptimizer()
|
|
|
637 |
"""Ultra supreme analysis wrapper"""
|
638 |
try:
|
639 |
prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
|
640 |
+
|
641 |
# Ultra enhanced score display
|
642 |
if score >= 95:
|
643 |
color = "#059669"
|
|
|
657 |
else:
|
658 |
color = "#ef4444"
|
659 |
grade = "NEEDS WORK"
|
660 |
+
|
661 |
score_html = f'''
|
662 |
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
|
663 |
<div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
|
|
|
665 |
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
|
666 |
</div>
|
667 |
'''
|
668 |
+
|
669 |
return prompt, info, score_html
|
670 |
+
|
671 |
except Exception as e:
|
672 |
logger.error(f"Ultra supreme wrapper error: {e}")
|
673 |
+
return "β Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
|
674 |
|
675 |
def clear_outputs():
|
676 |
gc.collect()
|
|
|
681 |
def create_interface():
|
682 |
css = """
|
683 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
|
684 |
+
|
685 |
.gradio-container {
|
686 |
max-width: 1600px !important;
|
687 |
margin: 0 auto !important;
|
688 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
689 |
+
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
|
690 |
}
|
691 |
+
|
692 |
.main-header {
|
693 |
text-align: center;
|
694 |
padding: 3rem 0 4rem 0;
|
|
|
700 |
position: relative;
|
701 |
overflow: hidden;
|
702 |
}
|
703 |
+
|
704 |
.main-header::before {
|
705 |
content: '';
|
706 |
position: absolute;
|
|
|
711 |
background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
|
712 |
z-index: 1;
|
713 |
}
|
714 |
+
|
715 |
.main-title {
|
716 |
font-size: 4rem !important;
|
717 |
font-weight: 900 !important;
|
|
|
724 |
position: relative;
|
725 |
z-index: 2;
|
726 |
}
|
727 |
+
|
728 |
.subtitle {
|
729 |
font-size: 1.5rem !important;
|
730 |
font-weight: 500 !important;
|
|
|
733 |
position: relative;
|
734 |
z-index: 2;
|
735 |
}
|
736 |
+
|
737 |
.prompt-output {
|
738 |
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
|
739 |
font-size: 15px !important;
|
|
|
745 |
box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
|
746 |
transition: all 0.3s ease !important;
|
747 |
}
|
748 |
+
|
749 |
.prompt-output:hover {
|
750 |
box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
|
751 |
transform: translateY(-2px) !important;
|
752 |
}
|
753 |
"""
|
754 |
+
|
755 |
with gr.Blocks(
|
756 |
theme=gr.themes.Soft(),
|
757 |
+
title="π Ultra Supreme Flux Optimizer",
|
758 |
css=css
|
759 |
) as interface:
|
760 |
+
|
761 |
gr.HTML("""
|
762 |
<div class="main-header">
|
763 |
+
<div class="main-title">π ULTRA SUPREME FLUX OPTIMIZER</div>
|
764 |
+
<div class="subtitle">Maximum Absolute Intelligence β’ Triple CLIP Analysis β’ Zero Compromise β’ Research Supremacy</div>
|
765 |
</div>
|
766 |
""")
|
767 |
+
|
768 |
with gr.Row():
|
769 |
with gr.Column(scale=1):
|
770 |
+
gr.Markdown("## π§ Ultra Supreme Analysis Engine")
|
771 |
+
|
772 |
image_input = gr.Image(
|
773 |
label="Upload image for MAXIMUM intelligence analysis",
|
774 |
type="pil",
|
775 |
height=500
|
776 |
)
|
777 |
+
|
778 |
analyze_btn = gr.Button(
|
779 |
+
"π ULTRA SUPREME ANALYSIS",
|
780 |
variant="primary",
|
781 |
size="lg"
|
782 |
)
|
783 |
+
|
784 |
gr.Markdown("""
|
785 |
+
### π¬ Maximum Absolute Intelligence
|
786 |
+
|
787 |
+
**π Triple CLIP Interrogation:**
|
788 |
+
β’ Fast analysis for broad contextual mapping
|
789 |
+
β’ Classic analysis for detailed feature extraction
|
790 |
+
β’ Best analysis for maximum depth intelligence
|
791 |
+
|
792 |
+
**π§ Ultra Deep Feature Extraction:**
|
793 |
+
β’ Micro-age detection with confidence scoring
|
794 |
+
β’ Cultural/religious context with semantic analysis
|
795 |
+
β’ Facial micro-features and expression mapping
|
796 |
+
β’ Emotional state and micro-expression detection
|
797 |
+
β’ Environmental lighting and atmospheric analysis
|
798 |
+
β’ Body language and pose interpretation
|
799 |
+
β’ Technical photography optimization
|
800 |
+
|
801 |
+
**β‘ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
|
802 |
""")
|
803 |
+
|
804 |
with gr.Column(scale=1):
|
805 |
+
gr.Markdown("## β‘ Ultra Supreme Result")
|
806 |
+
|
807 |
prompt_output = gr.Textbox(
|
808 |
+
label="π Ultra Supreme Optimized Flux Prompt",
|
809 |
placeholder="Upload an image to witness absolute maximum intelligence analysis...",
|
810 |
lines=12,
|
811 |
max_lines=20,
|
812 |
elem_classes=["prompt-output"],
|
813 |
show_copy_button=True
|
814 |
)
|
815 |
+
|
816 |
score_output = gr.HTML(
|
817 |
value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
|
818 |
)
|
819 |
+
|
820 |
info_output = gr.Markdown(value="")
|
821 |
+
|
822 |
+
clear_btn = gr.Button("ποΈ Clear Ultra Analysis", size="sm")
|
823 |
+
|
824 |
# Event handlers
|
825 |
analyze_btn.click(
|
826 |
fn=process_ultra_supreme_analysis,
|
827 |
inputs=[image_input],
|
828 |
outputs=[prompt_output, info_output, score_output]
|
829 |
)
|
830 |
+
|
831 |
clear_btn.click(
|
832 |
fn=clear_outputs,
|
833 |
outputs=[prompt_output, info_output, score_output]
|
834 |
)
|
835 |
+
|
836 |
gr.Markdown("""
|
837 |
---
|
838 |
+
### π Ultra Supreme Research Foundation
|
839 |
+
|
840 |
This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
|
841 |
ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
|
842 |
understanding and applies research-validated Flux rules with supreme intelligence.
|
843 |
+
|
844 |
+
**π¬ Pariente AI Research Laboratory** β’ **π Ultra Supreme Intelligence Engine**
|
845 |
""")
|
846 |
+
|
847 |
return interface
|
848 |
|
849 |
# Launch the application
|