Malaji71 commited on
Commit
16319e4
Β·
verified Β·
1 Parent(s): f8f6ca9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +187 -130
app.py CHANGED
@@ -15,6 +15,7 @@ import math
15
  warnings.filterwarnings("ignore", category=FutureWarning)
16
  warnings.filterwarnings("ignore", category=UserWarning)
17
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
 
18
  logging.basicConfig(level=logging.INFO)
19
  logger = logging.getLogger(__name__)
20
 
@@ -32,9 +33,12 @@ class UltraSupremeAnalyzer:
32
  """
33
  ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
34
  """
 
35
  def __init__(self):
36
  self.forbidden_elements = ["++", "weights", "white background [en dev]"]
 
37
  # ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
 
38
  self.micro_age_indicators = {
39
  "infant": ["baby", "infant", "newborn", "toddler"],
40
  "child": ["child", "kid", "young", "little", "small", "youth"],
@@ -44,6 +48,7 @@ class UltraSupremeAnalyzer:
44
  "senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
45
  "elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
46
  }
 
47
  self.ultra_facial_analysis = {
48
  "eye_features": {
49
  "shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
@@ -66,11 +71,13 @@ class UltraSupremeAnalyzer:
66
  "skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
67
  "facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
68
  }
 
69
  self.emotion_micro_expressions = {
70
  "primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
71
  "complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
72
  "emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
73
  }
 
74
  self.cultural_religious_ultra = {
75
  "jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
76
  "christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
@@ -82,6 +89,7 @@ class UltraSupremeAnalyzer:
82
  "general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
83
  }
84
  }
 
85
  self.clothing_accessories_ultra = {
86
  "headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
87
  "eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
@@ -90,6 +98,7 @@ class UltraSupremeAnalyzer:
90
  "clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
91
  "accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
92
  }
 
93
  self.environmental_ultra_analysis = {
94
  "indoor_settings": {
95
  "residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
@@ -110,6 +119,7 @@ class UltraSupremeAnalyzer:
110
  "quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
111
  }
112
  }
 
113
  self.pose_body_language_ultra = {
114
  "head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
115
  "posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
@@ -118,6 +128,7 @@ class UltraSupremeAnalyzer:
118
  "eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
119
  "overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
120
  }
 
121
  self.composition_photography_ultra = {
122
  "shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
123
  "angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
@@ -125,6 +136,7 @@ class UltraSupremeAnalyzer:
125
  "depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
126
  "camera_movement": ["static", "handheld", "stabilized", "smooth"]
127
  }
 
128
  self.technical_photography_ultra = {
129
  "camera_systems": {
130
  "professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
@@ -139,6 +151,7 @@ class UltraSupremeAnalyzer:
139
  "aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
140
  "photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
141
  }
 
142
  self.quality_descriptors_ultra = {
143
  "based_on_age": {
144
  "elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
@@ -157,15 +170,16 @@ class UltraSupremeAnalyzer:
157
  "artistic": ["creative", "expressive", "aesthetic", "artistic"]
158
  }
159
  }
160
-
161
- def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
162
  """ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
 
163
  combined_analysis = {
164
  "fast": clip_fast.lower(),
165
  "classic": clip_classic.lower(),
166
  "best": clip_best.lower(),
167
  "combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
168
  }
 
169
  ultra_result = {
170
  "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
171
  "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
@@ -176,54 +190,66 @@ class UltraSupremeAnalyzer:
176
  "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
177
  "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
178
  }
 
179
  # ULTRA DEEP AGE ANALYSIS
180
  age_scores = {}
181
  for age_category, indicators in self.micro_age_indicators.items():
182
  score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
183
  if score > 0:
184
  age_scores[age_category] = score
 
185
  if age_scores:
186
  ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
187
  ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
 
188
  # GENDER DETECTION WITH CONFIDENCE
189
  male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
190
  female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
 
191
  male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
192
  female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
 
193
  if male_score > female_score:
194
  ultra_result["demographic"]["gender"] = "man"
195
  elif female_score > male_score:
196
  ultra_result["demographic"]["gender"] = "woman"
 
197
  # ULTRA CULTURAL/RELIGIOUS ANALYSIS
198
  for culture_type, indicators in self.cultural_religious_ultra.items():
199
  if isinstance(indicators, list):
200
  for indicator in indicators:
201
  if indicator.lower() in combined_analysis["combined"]:
202
  ultra_result["demographic"]["cultural_religious"].append(indicator)
 
203
  # COMPREHENSIVE FACIAL FEATURE ANALYSIS
204
  for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
205
  for feature in features:
206
  if feature in combined_analysis["combined"]:
207
  ultra_result["facial_ultra"]["facial_hair"].append(feature)
 
208
  # Eyes analysis
209
  for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
210
  for feature in features:
211
  if feature in combined_analysis["combined"]:
212
  ultra_result["facial_ultra"]["eyes"].append(feature)
 
213
  # EMOTION AND MICRO-EXPRESSION ANALYSIS
214
  emotion_scores = {}
215
  for emotion in self.emotion_micro_expressions["complex_emotions"]:
216
  if emotion in combined_analysis["combined"]:
217
  emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
 
218
  if emotion_scores:
219
  ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
220
  ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
 
221
  # CLOTHING AND ACCESSORIES ANALYSIS
222
  for category, items in self.clothing_accessories_ultra.items():
223
  if isinstance(items, list):
224
  for item in items:
225
  if item in combined_analysis["combined"]:
226
  ultra_result["clothing_accessories"][category].append(item)
 
227
  # ENVIRONMENTAL ULTRA ANALYSIS
228
  setting_scores = {}
229
  for main_setting, sub_settings in self.environmental_ultra_analysis.items():
@@ -232,33 +258,41 @@ class UltraSupremeAnalyzer:
232
  score = sum(1 for location in locations if location in combined_analysis["combined"])
233
  if score > 0:
234
  setting_scores[sub_type] = score
 
235
  if setting_scores:
236
  ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
 
237
  # LIGHTING ANALYSIS
238
  for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
239
  for light_type in light_types:
240
  if light_type in combined_analysis["combined"]:
241
  ultra_result["environmental"]["lighting_analysis"].append(light_type)
 
242
  # POSE AND BODY LANGUAGE ANALYSIS
243
  for pose_category, indicators in self.pose_body_language_ultra.items():
244
  for indicator in indicators:
245
  if indicator in combined_analysis["combined"]:
246
  ultra_result["pose_composition"][pose_category].append(indicator)
 
247
  # TECHNICAL PHOTOGRAPHY ANALYSIS
248
  for shot_type in self.composition_photography_ultra["shot_types"]:
249
  if shot_type in combined_analysis["combined"]:
250
  ultra_result["technical_analysis"]["shot_type"] = shot_type
251
  break
 
252
  # CALCULATE INTELLIGENCE METRICS
253
  total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
254
  ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
255
  ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
256
  ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
 
257
  return ultra_result
258
-
259
  def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
260
  """BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
 
261
  components = []
 
262
  # 1. ULTRA INTELLIGENT ARTICLE SELECTION
263
  subject_desc = []
264
  if ultra_analysis["demographic"]["cultural_religious"]:
@@ -267,37 +301,47 @@ class UltraSupremeAnalyzer:
267
  subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
268
  if ultra_analysis["demographic"]["gender"]:
269
  subject_desc.append(ultra_analysis["demographic"]["gender"])
 
270
  if subject_desc:
271
  full_subject = " ".join(subject_desc)
272
  article = "An" if full_subject[0].lower() in 'aeiou' else "A"
273
  else:
274
  article = "A"
275
  components.append(article)
 
276
  # 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
277
  adjectives = []
 
278
  # Age-based adjectives
279
  age_cat = ultra_analysis["demographic"]["age_category"]
280
  if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
281
  adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
 
282
  # Emotion-based adjectives
283
  emotion = ultra_analysis["emotional_state"]["primary_emotion"]
284
  if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
285
  adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
 
286
  # Default if none found
287
  if not adjectives:
288
  adjectives = ["distinguished", "professional"]
 
289
  components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
 
290
  # 3. ULTRA ENHANCED SUBJECT
291
  if subject_desc:
292
  components.append(" ".join(subject_desc))
293
  else:
294
  components.append("person")
 
295
  # 4. ULTRA DETAILED FACIAL FEATURES
296
  facial_details = []
 
297
  # Eyes
298
  if ultra_analysis["facial_ultra"]["eyes"]:
299
  eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
300
  facial_details.append(f"with {eye_desc}")
 
301
  # Facial hair with ultra detail
302
  if ultra_analysis["facial_ultra"]["facial_hair"]:
303
  beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
@@ -305,14 +349,18 @@ class UltraSupremeAnalyzer:
305
  facial_details.append("with a distinguished silver beard")
306
  elif any("beard" in detail for detail in beard_details):
307
  facial_details.append("with a full well-groomed beard")
 
308
  if facial_details:
309
  components.extend(facial_details)
 
310
  # 5. CLOTHING AND ACCESSORIES ULTRA
311
  clothing_details = []
 
312
  # Eyewear
313
  if ultra_analysis["clothing_accessories"]["eyewear"]:
314
  eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
315
  clothing_details.append(f"wearing {eyewear}")
 
316
  # Headwear
317
  if ultra_analysis["clothing_accessories"]["headwear"]:
318
  headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
@@ -320,18 +368,24 @@ class UltraSupremeAnalyzer:
320
  clothing_details.append("wearing a traditional black hat")
321
  else:
322
  clothing_details.append(f"wearing a {headwear}")
 
323
  if clothing_details:
324
  components.extend(clothing_details)
 
325
  # 6. ULTRA POSE AND BODY LANGUAGE
326
  pose_description = "positioned with natural dignity"
 
327
  if ultra_analysis["pose_composition"]["posture"]:
328
  posture = ultra_analysis["pose_composition"]["posture"][0]
329
  pose_description = f"maintaining {posture}"
330
  elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
331
  pose_description = "captured in contemplative portrait pose"
 
332
  components.append(pose_description)
 
333
  # 7. ULTRA ENVIRONMENTAL CONTEXT
334
  environment_desc = "in a thoughtfully composed environment"
 
335
  if ultra_analysis["environmental"]["setting_type"]:
336
  setting_map = {
337
  "residential": "in an intimate home setting",
@@ -340,9 +394,12 @@ class UltraSupremeAnalyzer:
340
  "formal": "in a distinguished formal setting"
341
  }
342
  environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
 
343
  components.append(environment_desc)
 
344
  # 8. ULTRA SOPHISTICATED LIGHTING
345
  lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
 
346
  if ultra_analysis["environmental"]["lighting_analysis"]:
347
  primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
348
  if "dramatic" in primary_light:
@@ -351,7 +408,9 @@ class UltraSupremeAnalyzer:
351
  lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
352
  elif "soft" in primary_light:
353
  lighting_desc = "softly illuminated to reveal nuanced expressions and character"
 
354
  components.append(lighting_desc)
 
355
  # 9. ULTRA TECHNICAL SPECIFICATIONS
356
  if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
357
  camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
@@ -359,29 +418,39 @@ class UltraSupremeAnalyzer:
359
  camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
360
  else:
361
  camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
 
362
  components.append(camera_setup)
 
363
  # 10. ULTRA QUALITY DESIGNATION
364
  quality_designation = "professional portrait photography"
 
365
  if ultra_analysis["demographic"]["cultural_religious"]:
366
  quality_designation = "fine art documentary photography"
367
  elif ultra_analysis["emotional_state"]["primary_emotion"]:
368
  quality_designation = "expressive portrait photography"
 
369
  components.append(quality_designation)
 
370
  # ULTRA FINAL ASSEMBLY
371
  prompt = ", ".join(components)
 
372
  # Ultra cleaning and optimization
373
  prompt = re.sub(r'\s+', ' ', prompt)
374
  prompt = re.sub(r',\s*,+', ',', prompt)
375
  prompt = re.sub(r'\s*,\s*', ', ', prompt)
376
  prompt = prompt.replace(" ,", ",")
 
377
  if prompt:
378
  prompt = prompt[0].upper() + prompt[1:]
 
379
  return prompt
380
-
381
  def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
382
  """ULTRA SUPREME INTELLIGENCE SCORING"""
 
383
  score = 0
384
  breakdown = {}
 
385
  # Structure Excellence (15 points)
386
  structure_score = 0
387
  if prompt.startswith(("A", "An")):
@@ -390,14 +459,17 @@ class UltraSupremeAnalyzer:
390
  structure_score += 10
391
  score += structure_score
392
  breakdown["structure"] = structure_score
 
393
  # Feature Detection Depth (25 points)
394
  features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
395
  score += features_score
396
  breakdown["features"] = features_score
 
397
  # Cultural/Religious Awareness (20 points)
398
  cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
399
  score += cultural_score
400
  breakdown["cultural"] = cultural_score
 
401
  # Emotional Intelligence (15 points)
402
  emotion_score = 0
403
  if ultra_analysis["emotional_state"]["primary_emotion"]:
@@ -406,6 +478,7 @@ class UltraSupremeAnalyzer:
406
  emotion_score += 5
407
  score += emotion_score
408
  breakdown["emotional"] = emotion_score
 
409
  # Technical Sophistication (15 points)
410
  tech_score = 0
411
  if "Phase One" in prompt or "Hasselblad" in prompt:
@@ -416,6 +489,7 @@ class UltraSupremeAnalyzer:
416
  tech_score += 5
417
  score += tech_score
418
  breakdown["technical"] = tech_score
 
419
  # Environmental Context (10 points)
420
  env_score = 0
421
  if ultra_analysis["environmental"]["setting_type"]:
@@ -424,20 +498,20 @@ class UltraSupremeAnalyzer:
424
  env_score += 5
425
  score += env_score
426
  breakdown["environmental"] = env_score
 
427
  return min(score, 100), breakdown
428
-
429
-
430
- class UltraSupremeOptimizer:
431
  def __init__(self):
432
  self.interrogator = None
433
  self.analyzer = UltraSupremeAnalyzer()
434
  self.usage_count = 0
435
  self.device = DEVICE
436
  self.is_initialized = False
437
-
438
  def initialize_model(self):
439
  if self.is_initialized:
440
  return True
 
441
  try:
442
  config = Config(
443
  clip_model_name="ViT-L-14/openai",
@@ -446,163 +520,115 @@ class UltraSupremeOptimizer:
446
  quiet=True,
447
  device=self.device
448
  )
 
449
  self.interrogator = Interrogator(config)
450
  self.is_initialized = True
 
451
  if self.device == "cpu":
452
  gc.collect()
453
  else:
454
  torch.cuda.empty_cache()
 
455
  return True
 
456
  except Exception as e:
457
  logger.error(f"Initialization error: {e}")
458
  return False
459
-
460
  def optimize_image(self, image):
461
  if image is None:
462
  return None
 
463
  if isinstance(image, np.ndarray):
464
  image = Image.fromarray(image)
465
  elif not isinstance(image, Image.Image):
466
  image = Image.open(image)
 
467
  if image.mode != 'RGB':
468
  image = image.convert('RGB')
 
469
  max_size = 768 if self.device != "cpu" else 512
470
  if image.size[0] > max_size or image.size[1] > max_size:
471
  image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
 
472
  return image
473
-
474
  @spaces.GPU
475
  def generate_ultra_supreme_prompt(self, image):
476
  try:
477
  if not self.is_initialized:
478
  if not self.initialize_model():
479
- return "Γ’ οΏ½ οΏ½ Model initialization failed.", "Please refresh and try again.", 0, {}
 
480
  if image is None:
481
- return "Γ’ οΏ½ οΏ½ Please upload an image.", "No image provided.", 0, {}
 
482
  self.usage_count += 1
 
483
  image = self.optimize_image(image)
484
  if image is None:
485
- return "Γ’ οΏ½ οΏ½ Image processing failed.", "Invalid image format.", 0, {}
 
486
  start_time = datetime.now()
 
487
  # ULTRA SUPREME TRIPLE CLIP ANALYSIS
488
  logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
 
489
  clip_fast = self.interrogator.interrogate_fast(image)
490
  clip_classic = self.interrogator.interrogate_classic(image)
491
  clip_best = self.interrogator.interrogate(image)
 
492
  logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
 
493
  # ULTRA SUPREME ANALYSIS
494
  ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
 
495
  # BUILD ULTRA SUPREME FLUX PROMPT
496
  optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
 
497
  # CALCULATE ULTRA SUPREME SCORE
498
  score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
 
499
  end_time = datetime.now()
500
  duration = (end_time - start_time).total_seconds()
 
501
  # Memory cleanup
502
  if self.device == "cpu":
503
  gc.collect()
504
  else:
505
  torch.cuda.empty_cache()
 
506
  # ULTRA COMPREHENSIVE ANALYSIS REPORT
507
- gpu_status = "Γ’ οΏ½ Β‘ ZeroGPU" if torch.cuda.is_available() else "Γ° οΏ½ οΏ½ Β» CPU"
508
- # Format detected elements
509
- features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
510
- cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
511
- clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
512
- analysis_info = f"""**Γ° οΏ½ οΏ½ οΏ½ ULTRA SUPREME ANALYSIS COMPLETE**
513
- **Processing:** {gpu_status} Γ’ οΏ½ Β’ {duration:.1f}s Γ’ οΏ½ Β’ Triple CLIP Ultra Intelligence
514
- **Ultra Score:** {score}/100 Γ’ οΏ½ Β’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
515
- **Generation:** #{self.usage_count}
516
- **Γ° οΏ½ Β§Β  ULTRA DEEP DETECTION:**
517
- Γ’ οΏ½ Β’ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
518
- Γ’ οΏ½ Β’ **Cultural Context:** {cultural}
519
- Γ’ οΏ½ Β’ **Facial Features:** {features}
520
- Γ’ οΏ½ Β’ **Accessories:** {clothing}
521
- Γ’ οΏ½ Β’ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
522
- Γ’ οΏ½ Β’ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
523
- Γ’ οΏ½ Β’ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
524
- **Γ° οΏ½ οΏ½ οΏ½ CLIP ANALYSIS SOURCES:**
525
- Γ’ οΏ½ Β’ **Fast:** {clip_fast[:50]}...
526
- Γ’ οΏ½ Β’ **Classic:** {clip_classic[:50]}...
527
- Γ’ οΏ½ Β’ **Best:** {clip_best[:50]}...
528
- **Γ’ οΏ½ Β‘ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
529
- return optimized_prompt, analysis_info, score, breakdown
530
- except Exception as e:
531
- logger.error(f"Ultra supreme generation error: {e}")
532
- return f"Γ’ οΏ½ οΏ½ Error: {str(e)}", "Please try with a different image.", 0, {}
533
-
534
-
535
- # Initialize the optimizer
536
- optimizer = UltraSupremeOptimizer()
537
-
538
-
539
- def process_ultra_supreme_analysis(image):
540
- """Ultra supreme analysis wrapper"""
541
- try:
542
- prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
543
- # Ultra enhanced score display
544
- if score >= 95:
545
- color = "#059669"
546
- grade = "LEGENDARY"
547
- elif score >= 90:
548
- color = "#10b981"
549
- grade = "EXCELLENT"
550
- elif score >= 80:
551
- color = "#22c55e"
552
- grade = "VERY GOOD"
553
- elif score >= 70:
554
- color = "#f59e0b"
555
- grade = "GOOD"
556
- elif score >= 60:
557
- color = "#f97316"
558
- grade = "FAIR"
559
- else:
560
- color = "#ef4444"
561
- grade = "NEEDS WORK"
562
- score_html = f'''
563
- <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
564
- <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
565
- <div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em;
566
- # ULTRA SUPREME ANALYSIS
567
- ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
568
- # BUILD ULTRA SUPREME FLUX PROMPT
569
- optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
570
- # CALCULATE ULTRA SUPREME SCORE
571
- score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
572
- end_time = datetime.now()
573
- duration = (end_time - start_time).total_seconds()
574
- # Memory cleanup
575
- if self.device == "cpu":
576
- gc.collect()
577
- else:
578
- torch.cuda.empty_cache()
579
- # ULTRA COMPREHENSIVE ANALYSIS REPORT
580
- gpu_status = "Γ’ οΏ½ Β‘ ZeroGPU" if torch.cuda.is_available() else "Γ° οΏ½ οΏ½ Β» CPU"
581
  # Format detected elements
582
  features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
583
  cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
584
  clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
585
- analysis_info = f"""**Γ° οΏ½ οΏ½ οΏ½ ULTRA SUPREME ANALYSIS COMPLETE**
586
- **Processing:** {gpu_status} Γ’ οΏ½ Β’ {duration:.1f}s Γ’ οΏ½ Β’ Triple CLIP Ultra Intelligence
587
- **Ultra Score:** {score}/100 Γ’ οΏ½ Β’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
 
588
  **Generation:** #{self.usage_count}
589
- **Γ° οΏ½ Β§Β  ULTRA DEEP DETECTION:**
590
- Γ’ οΏ½ Β’ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
591
- Γ’ οΏ½ Β’ **Cultural Context:** {cultural}
592
- Γ’ οΏ½ Β’ **Facial Features:** {features}
593
- Γ’ οΏ½ Β’ **Accessories:** {clothing}
594
- Γ’ οΏ½ Β’ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
595
- Γ’ οΏ½ Β’ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
596
- Γ’ οΏ½ Β’ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
597
- **Γ° οΏ½ οΏ½ οΏ½ CLIP ANALYSIS SOURCES:**
598
- Γ’ οΏ½ Β’ **Fast:** {clip_fast[:50]}...
599
- Γ’ οΏ½ Β’ **Classic:** {clip_classic[:50]}...
600
- Γ’ οΏ½ Β’ **Best:** {clip_best[:50]}...
601
- **Γ’ οΏ½ Β‘ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
 
602
  return optimized_prompt, analysis_info, score, breakdown
 
603
  except Exception as e:
604
  logger.error(f"Ultra supreme generation error: {e}")
605
- return f"Γ’ οΏ½ οΏ½ Error: {str(e)}", "Please try with a different image.", 0, {}
606
 
607
  # Initialize the optimizer
608
  optimizer = UltraSupremeOptimizer()
@@ -611,6 +637,7 @@ def process_ultra_supreme_analysis(image):
611
  """Ultra supreme analysis wrapper"""
612
  try:
613
  prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
 
614
  # Ultra enhanced score display
615
  if score >= 95:
616
  color = "#059669"
@@ -630,6 +657,7 @@ def process_ultra_supreme_analysis(image):
630
  else:
631
  color = "#ef4444"
632
  grade = "NEEDS WORK"
 
633
  score_html = f'''
634
  <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
635
  <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
@@ -637,10 +665,12 @@ def process_ultra_supreme_analysis(image):
637
  <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
638
  </div>
639
  '''
 
640
  return prompt, info, score_html
 
641
  except Exception as e:
642
  logger.error(f"Ultra supreme wrapper error: {e}")
643
- return "Γ’ οΏ½ οΏ½ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
644
 
645
  def clear_outputs():
646
  gc.collect()
@@ -651,12 +681,14 @@ def clear_outputs():
651
  def create_interface():
652
  css = """
653
  @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
 
654
  .gradio-container {
655
  max-width: 1600px !important;
656
  margin: 0 auto !important;
657
  font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
658
- background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
659
  }
 
660
  .main-header {
661
  text-align: center;
662
  padding: 3rem 0 4rem 0;
@@ -668,6 +700,7 @@ def create_interface():
668
  position: relative;
669
  overflow: hidden;
670
  }
 
671
  .main-header::before {
672
  content: '';
673
  position: absolute;
@@ -678,6 +711,7 @@ def create_interface():
678
  background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
679
  z-index: 1;
680
  }
 
681
  .main-title {
682
  font-size: 4rem !important;
683
  font-weight: 900 !important;
@@ -690,6 +724,7 @@ def create_interface():
690
  position: relative;
691
  z-index: 2;
692
  }
 
693
  .subtitle {
694
  font-size: 1.5rem !important;
695
  font-weight: 500 !important;
@@ -698,6 +733,7 @@ def create_interface():
698
  position: relative;
699
  z-index: 2;
700
  }
 
701
  .prompt-output {
702
  font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
703
  font-size: 15px !important;
@@ -709,84 +745,105 @@ def create_interface():
709
  box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
710
  transition: all 0.3s ease !important;
711
  }
 
712
  .prompt-output:hover {
713
  box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
714
  transform: translateY(-2px) !important;
715
  }
716
  """
 
717
  with gr.Blocks(
718
  theme=gr.themes.Soft(),
719
- title="Γ° οΏ½ οΏ½ οΏ½ Ultra Supreme Flux Optimizer",
720
  css=css
721
  ) as interface:
 
722
  gr.HTML("""
723
  <div class="main-header">
724
- <div class="main-title">Γ° οΏ½ οΏ½ οΏ½ ULTRA SUPREME FLUX OPTIMIZER</div>
725
- <div class="subtitle">Maximum Absolute Intelligence Γ’ οΏ½ Β’ Triple CLIP Analysis Γ’ οΏ½ Β’ Zero Compromise Γ’ οΏ½ Β’ Research Supremacy</div>
726
  </div>
727
  """)
 
728
  with gr.Row():
729
  with gr.Column(scale=1):
730
- gr.Markdown("## Γ° οΏ½ Β§Β  Ultra Supreme Analysis Engine")
 
731
  image_input = gr.Image(
732
  label="Upload image for MAXIMUM intelligence analysis",
733
  type="pil",
734
  height=500
735
  )
 
736
  analyze_btn = gr.Button(
737
- "Γ° οΏ½ οΏ½ οΏ½ ULTRA SUPREME ANALYSIS",
738
  variant="primary",
739
  size="lg"
740
  )
 
741
  gr.Markdown("""
742
- ### Γ° οΏ½ οΏ½ Β¬ Maximum Absolute Intelligence
743
- **Γ° οΏ½ οΏ½ οΏ½ Triple CLIP Interrogation:**
744
- Γ’ οΏ½ Β’ Fast analysis for broad contextual mapping
745
- Γ’ οΏ½ Β’ Classic analysis for detailed feature extraction
746
- Γ’ οΏ½ Β’ Best analysis for maximum depth intelligence
747
- **Γ° οΏ½ Β§Β  Ultra Deep Feature Extraction:**
748
- Γ’ οΏ½ Β’ Micro-age detection with confidence scoring
749
- Γ’ οΏ½ Β’ Cultural/religious context with semantic analysis
750
- Γ’ οΏ½ Β’ Facial micro-features and expression mapping
751
- Γ’ οΏ½ Β’ Emotional state and micro-expression detection
752
- Γ’ οΏ½ Β’ Environmental lighting and atmospheric analysis
753
- Γ’ οΏ½ Β’ Body language and pose interpretation
754
- Γ’ οΏ½ Β’ Technical photography optimization
755
- **Γ’ οΏ½ Β‘ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
 
 
 
756
  """)
 
757
  with gr.Column(scale=1):
758
- gr.Markdown("## Γ’ οΏ½ Β‘ Ultra Supreme Result")
 
759
  prompt_output = gr.Textbox(
760
- label="Γ° οΏ½ οΏ½ οΏ½ Ultra Supreme Optimized Flux Prompt",
761
  placeholder="Upload an image to witness absolute maximum intelligence analysis...",
762
  lines=12,
763
  max_lines=20,
764
  elem_classes=["prompt-output"],
765
  show_copy_button=True
766
  )
 
767
  score_output = gr.HTML(
768
  value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
769
  )
 
770
  info_output = gr.Markdown(value="")
771
- clear_btn = gr.Button("Γ° οΏ½ οΏ½ οΏ½ Γ―ΒΈ οΏ½ Clear Ultra Analysis", size="sm")
 
 
772
  # Event handlers
773
  analyze_btn.click(
774
  fn=process_ultra_supreme_analysis,
775
  inputs=[image_input],
776
  outputs=[prompt_output, info_output, score_output]
777
  )
 
778
  clear_btn.click(
779
  fn=clear_outputs,
780
  outputs=[prompt_output, info_output, score_output]
781
  )
 
782
  gr.Markdown("""
783
  ---
784
- ### Γ° οΏ½ οΏ½ οΏ½ Ultra Supreme Research Foundation
 
785
  This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
786
  ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
787
  understanding and applies research-validated Flux rules with supreme intelligence.
788
- **Γ° οΏ½ οΏ½ Β¬ Pariente AI Research Laboratory** Γ’ οΏ½ Β’ **Γ° οΏ½ οΏ½ οΏ½ Ultra Supreme Intelligence Engine**
 
789
  """)
 
790
  return interface
791
 
792
  # Launch the application
 
15
  warnings.filterwarnings("ignore", category=FutureWarning)
16
  warnings.filterwarnings("ignore", category=UserWarning)
17
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
18
+
19
  logging.basicConfig(level=logging.INFO)
20
  logger = logging.getLogger(__name__)
21
 
 
33
  """
34
  ULTRA SUPREME ANALYSIS ENGINE - ABSOLUTE MAXIMUM INTELLIGENCE
35
  """
36
+
37
  def __init__(self):
38
  self.forbidden_elements = ["++", "weights", "white background [en dev]"]
39
+
40
  # ULTRA COMPREHENSIVE VOCABULARIES - MAXIMUM DEPTH
41
+
42
  self.micro_age_indicators = {
43
  "infant": ["baby", "infant", "newborn", "toddler"],
44
  "child": ["child", "kid", "young", "little", "small", "youth"],
 
48
  "senior": ["senior", "older", "elderly", "aged", "vintage", "seasoned"],
49
  "elderly": ["elderly", "old", "ancient", "weathered", "aged", "gray", "grey", "white hair", "silver", "wrinkled", "lined", "creased", "time-worn", "distinguished by age"]
50
  }
51
+
52
  self.ultra_facial_analysis = {
53
  "eye_features": {
54
  "shape": ["round eyes", "almond eyes", "narrow eyes", "wide eyes", "deep-set eyes", "prominent eyes"],
 
71
  "skin_analysis": ["smooth skin", "weathered skin", "wrinkled skin", "clear skin", "rough skin", "aged skin", "youthful skin", "tanned skin", "pale skin", "olive skin"],
72
  "facial_structure": ["angular face", "round face", "oval face", "square jaw", "defined cheekbones", "high cheekbones", "strong jawline", "soft features", "sharp features"]
73
  }
74
+
75
  self.emotion_micro_expressions = {
76
  "primary_emotions": ["happy", "sad", "angry", "fearful", "surprised", "disgusted", "contemptuous"],
77
  "complex_emotions": ["contemplative", "melancholic", "serene", "intense", "peaceful", "troubled", "confident", "uncertain", "wise", "stern", "gentle", "authoritative"],
78
  "emotional_indicators": ["furrowed brow", "raised eyebrows", "squinted eyes", "pursed lips", "relaxed expression", "tense jaw", "soft eyes", "hard stare"]
79
  }
80
+
81
  self.cultural_religious_ultra = {
82
  "jewish_orthodox": ["Orthodox Jewish", "Hasidic", "Ultra-Orthodox", "religious Jewish", "traditional Jewish", "devout Jewish"],
83
  "christian": ["Christian", "Catholic", "Protestant", "Orthodox Christian", "religious Christian"],
 
89
  "general": ["religious garment", "traditional clothing", "ceremonial dress", "formal religious attire"]
90
  }
91
  }
92
+
93
  self.clothing_accessories_ultra = {
94
  "headwear": ["hat", "cap", "beret", "headband", "turban", "hood", "helmet", "crown", "headpiece"],
95
  "eyewear": ["glasses", "spectacles", "sunglasses", "reading glasses", "wire-frame glasses", "thick-rimmed glasses", "designer glasses", "vintage glasses"],
 
98
  "clothing_styles": ["formal", "casual", "business", "traditional", "modern", "vintage", "classic", "contemporary"],
99
  "accessories": ["jewelry", "watch", "necklace", "ring", "bracelet", "earrings", "pin", "brooch"]
100
  }
101
+
102
  self.environmental_ultra_analysis = {
103
  "indoor_settings": {
104
  "residential": ["home", "house", "apartment", "living room", "bedroom", "kitchen", "dining room"],
 
119
  "quality": ["soft lighting", "hard lighting", "diffused light", "direct light", "ambient light", "mood lighting"]
120
  }
121
  }
122
+
123
  self.pose_body_language_ultra = {
124
  "head_position": ["head up", "head down", "head tilted", "head straight", "head turned", "profile view", "three-quarter view"],
125
  "posture": ["upright posture", "slouched", "relaxed posture", "formal posture", "casual stance", "dignified bearing"],
 
128
  "eye_contact": ["looking at camera", "looking away", "direct gaze", "averted gaze", "looking down", "looking up"],
129
  "overall_demeanor": ["confident", "reserved", "approachable", "authoritative", "gentle", "stern", "relaxed", "tense"]
130
  }
131
+
132
  self.composition_photography_ultra = {
133
  "shot_types": ["close-up", "medium shot", "wide shot", "extreme close-up", "portrait shot", "headshot", "bust shot", "full body"],
134
  "angles": ["eye level", "high angle", "low angle", "bird's eye", "worm's eye", "Dutch angle"],
 
136
  "depth_of_field": ["shallow depth", "deep focus", "bokeh", "sharp focus", "soft focus"],
137
  "camera_movement": ["static", "handheld", "stabilized", "smooth"]
138
  }
139
+
140
  self.technical_photography_ultra = {
141
  "camera_systems": {
142
  "professional": ["Phase One XF", "Phase One XT", "Hasselblad X2D", "Fujifilm GFX", "Canon EOS R5", "Nikon Z9"],
 
151
  "aperture_settings": ["f/1.4", "f/2", "f/2.8", "f/4", "f/5.6", "f/8"],
152
  "photography_styles": ["portrait photography", "documentary photography", "fine art photography", "commercial photography", "editorial photography"]
153
  }
154
+
155
  self.quality_descriptors_ultra = {
156
  "based_on_age": {
157
  "elderly": ["distinguished", "venerable", "dignified", "wise", "experienced", "seasoned", "time-honored", "revered", "weathered", "sage-like"],
 
170
  "artistic": ["creative", "expressive", "aesthetic", "artistic"]
171
  }
172
  }
173
+ def ultra_supreme_analysis(self, clip_fast, clip_classic, clip_best):
 
174
  """ULTRA SUPREME ANALYSIS - MAXIMUM POSSIBLE INTELLIGENCE"""
175
+
176
  combined_analysis = {
177
  "fast": clip_fast.lower(),
178
  "classic": clip_classic.lower(),
179
  "best": clip_best.lower(),
180
  "combined": f"{clip_fast} {clip_classic} {clip_best}".lower()
181
  }
182
+
183
  ultra_result = {
184
  "demographic": {"age_category": None, "age_confidence": 0, "gender": None, "cultural_religious": []},
185
  "facial_ultra": {"eyes": [], "eyebrows": [], "nose": [], "mouth": [], "facial_hair": [], "skin": [], "structure": []},
 
190
  "technical_analysis": {"shot_type": None, "angle": None, "lighting_setup": None, "suggested_equipment": {}},
191
  "intelligence_metrics": {"total_features_detected": 0, "analysis_depth_score": 0, "cultural_awareness_score": 0, "technical_optimization_score": 0}
192
  }
193
+
194
  # ULTRA DEEP AGE ANALYSIS
195
  age_scores = {}
196
  for age_category, indicators in self.micro_age_indicators.items():
197
  score = sum(1 for indicator in indicators if indicator in combined_analysis["combined"])
198
  if score > 0:
199
  age_scores[age_category] = score
200
+
201
  if age_scores:
202
  ultra_result["demographic"]["age_category"] = max(age_scores, key=age_scores.get)
203
  ultra_result["demographic"]["age_confidence"] = age_scores[ultra_result["demographic"]["age_category"]]
204
+
205
  # GENDER DETECTION WITH CONFIDENCE
206
  male_indicators = ["man", "male", "gentleman", "guy", "he", "his", "masculine"]
207
  female_indicators = ["woman", "female", "lady", "she", "her", "feminine"]
208
+
209
  male_score = sum(1 for indicator in male_indicators if indicator in combined_analysis["combined"])
210
  female_score = sum(1 for indicator in female_indicators if indicator in combined_analysis["combined"])
211
+
212
  if male_score > female_score:
213
  ultra_result["demographic"]["gender"] = "man"
214
  elif female_score > male_score:
215
  ultra_result["demographic"]["gender"] = "woman"
216
+
217
  # ULTRA CULTURAL/RELIGIOUS ANALYSIS
218
  for culture_type, indicators in self.cultural_religious_ultra.items():
219
  if isinstance(indicators, list):
220
  for indicator in indicators:
221
  if indicator.lower() in combined_analysis["combined"]:
222
  ultra_result["demographic"]["cultural_religious"].append(indicator)
223
+
224
  # COMPREHENSIVE FACIAL FEATURE ANALYSIS
225
  for hair_category, features in self.ultra_facial_analysis["facial_hair_ultra"].items():
226
  for feature in features:
227
  if feature in combined_analysis["combined"]:
228
  ultra_result["facial_ultra"]["facial_hair"].append(feature)
229
+
230
  # Eyes analysis
231
  for eye_category, features in self.ultra_facial_analysis["eye_features"].items():
232
  for feature in features:
233
  if feature in combined_analysis["combined"]:
234
  ultra_result["facial_ultra"]["eyes"].append(feature)
235
+
236
  # EMOTION AND MICRO-EXPRESSION ANALYSIS
237
  emotion_scores = {}
238
  for emotion in self.emotion_micro_expressions["complex_emotions"]:
239
  if emotion in combined_analysis["combined"]:
240
  emotion_scores[emotion] = combined_analysis["combined"].count(emotion)
241
+
242
  if emotion_scores:
243
  ultra_result["emotional_state"]["primary_emotion"] = max(emotion_scores, key=emotion_scores.get)
244
  ultra_result["emotional_state"]["emotion_confidence"] = emotion_scores[ultra_result["emotional_state"]["primary_emotion"]]
245
+
246
  # CLOTHING AND ACCESSORIES ANALYSIS
247
  for category, items in self.clothing_accessories_ultra.items():
248
  if isinstance(items, list):
249
  for item in items:
250
  if item in combined_analysis["combined"]:
251
  ultra_result["clothing_accessories"][category].append(item)
252
+
253
  # ENVIRONMENTAL ULTRA ANALYSIS
254
  setting_scores = {}
255
  for main_setting, sub_settings in self.environmental_ultra_analysis.items():
 
258
  score = sum(1 for location in locations if location in combined_analysis["combined"])
259
  if score > 0:
260
  setting_scores[sub_type] = score
261
+
262
  if setting_scores:
263
  ultra_result["environmental"]["setting_type"] = max(setting_scores, key=setting_scores.get)
264
+
265
  # LIGHTING ANALYSIS
266
  for light_category, light_types in self.environmental_ultra_analysis["lighting_ultra"].items():
267
  for light_type in light_types:
268
  if light_type in combined_analysis["combined"]:
269
  ultra_result["environmental"]["lighting_analysis"].append(light_type)
270
+
271
  # POSE AND BODY LANGUAGE ANALYSIS
272
  for pose_category, indicators in self.pose_body_language_ultra.items():
273
  for indicator in indicators:
274
  if indicator in combined_analysis["combined"]:
275
  ultra_result["pose_composition"][pose_category].append(indicator)
276
+
277
  # TECHNICAL PHOTOGRAPHY ANALYSIS
278
  for shot_type in self.composition_photography_ultra["shot_types"]:
279
  if shot_type in combined_analysis["combined"]:
280
  ultra_result["technical_analysis"]["shot_type"] = shot_type
281
  break
282
+
283
  # CALCULATE INTELLIGENCE METRICS
284
  total_features = sum(len(v) if isinstance(v, list) else (1 if v else 0) for category in ultra_result.values() if isinstance(category, dict) for v in category.values())
285
  ultra_result["intelligence_metrics"]["total_features_detected"] = total_features
286
  ultra_result["intelligence_metrics"]["analysis_depth_score"] = min(total_features * 5, 100)
287
  ultra_result["intelligence_metrics"]["cultural_awareness_score"] = len(ultra_result["demographic"]["cultural_religious"]) * 20
288
+
289
  return ultra_result
290
+
291
  def build_ultra_supreme_prompt(self, ultra_analysis, clip_results):
292
  """BUILD ULTRA SUPREME FLUX PROMPT - ABSOLUTE MAXIMUM QUALITY"""
293
+
294
  components = []
295
+
296
  # 1. ULTRA INTELLIGENT ARTICLE SELECTION
297
  subject_desc = []
298
  if ultra_analysis["demographic"]["cultural_religious"]:
 
301
  subject_desc.append(ultra_analysis["demographic"]["age_category"].replace("_", " "))
302
  if ultra_analysis["demographic"]["gender"]:
303
  subject_desc.append(ultra_analysis["demographic"]["gender"])
304
+
305
  if subject_desc:
306
  full_subject = " ".join(subject_desc)
307
  article = "An" if full_subject[0].lower() in 'aeiou' else "A"
308
  else:
309
  article = "A"
310
  components.append(article)
311
+
312
  # 2. ULTRA CONTEXTUAL ADJECTIVES (max 2-3 per Flux rules)
313
  adjectives = []
314
+
315
  # Age-based adjectives
316
  age_cat = ultra_analysis["demographic"]["age_category"]
317
  if age_cat and age_cat in self.quality_descriptors_ultra["based_on_age"]:
318
  adjectives.extend(self.quality_descriptors_ultra["based_on_age"][age_cat][:2])
319
+
320
  # Emotion-based adjectives
321
  emotion = ultra_analysis["emotional_state"]["primary_emotion"]
322
  if emotion and emotion in self.quality_descriptors_ultra["based_on_emotion"]:
323
  adjectives.extend(self.quality_descriptors_ultra["based_on_emotion"][emotion][:1])
324
+
325
  # Default if none found
326
  if not adjectives:
327
  adjectives = ["distinguished", "professional"]
328
+
329
  components.extend(adjectives[:2]) # Flux rule: max 2-3 adjectives
330
+
331
  # 3. ULTRA ENHANCED SUBJECT
332
  if subject_desc:
333
  components.append(" ".join(subject_desc))
334
  else:
335
  components.append("person")
336
+
337
  # 4. ULTRA DETAILED FACIAL FEATURES
338
  facial_details = []
339
+
340
  # Eyes
341
  if ultra_analysis["facial_ultra"]["eyes"]:
342
  eye_desc = ultra_analysis["facial_ultra"]["eyes"][0]
343
  facial_details.append(f"with {eye_desc}")
344
+
345
  # Facial hair with ultra detail
346
  if ultra_analysis["facial_ultra"]["facial_hair"]:
347
  beard_details = ultra_analysis["facial_ultra"]["facial_hair"]
 
349
  facial_details.append("with a distinguished silver beard")
350
  elif any("beard" in detail for detail in beard_details):
351
  facial_details.append("with a full well-groomed beard")
352
+
353
  if facial_details:
354
  components.extend(facial_details)
355
+
356
  # 5. CLOTHING AND ACCESSORIES ULTRA
357
  clothing_details = []
358
+
359
  # Eyewear
360
  if ultra_analysis["clothing_accessories"]["eyewear"]:
361
  eyewear = ultra_analysis["clothing_accessories"]["eyewear"][0]
362
  clothing_details.append(f"wearing {eyewear}")
363
+
364
  # Headwear
365
  if ultra_analysis["clothing_accessories"]["headwear"]:
366
  headwear = ultra_analysis["clothing_accessories"]["headwear"][0]
 
368
  clothing_details.append("wearing a traditional black hat")
369
  else:
370
  clothing_details.append(f"wearing a {headwear}")
371
+
372
  if clothing_details:
373
  components.extend(clothing_details)
374
+
375
  # 6. ULTRA POSE AND BODY LANGUAGE
376
  pose_description = "positioned with natural dignity"
377
+
378
  if ultra_analysis["pose_composition"]["posture"]:
379
  posture = ultra_analysis["pose_composition"]["posture"][0]
380
  pose_description = f"maintaining {posture}"
381
  elif ultra_analysis["technical_analysis"]["shot_type"] == "portrait":
382
  pose_description = "captured in contemplative portrait pose"
383
+
384
  components.append(pose_description)
385
+
386
  # 7. ULTRA ENVIRONMENTAL CONTEXT
387
  environment_desc = "in a thoughtfully composed environment"
388
+
389
  if ultra_analysis["environmental"]["setting_type"]:
390
  setting_map = {
391
  "residential": "in an intimate home setting",
 
394
  "formal": "in a distinguished formal setting"
395
  }
396
  environment_desc = setting_map.get(ultra_analysis["environmental"]["setting_type"], "in a carefully arranged professional setting")
397
+
398
  components.append(environment_desc)
399
+
400
  # 8. ULTRA SOPHISTICATED LIGHTING
401
  lighting_desc = "illuminated by sophisticated portrait lighting that emphasizes character and facial texture"
402
+
403
  if ultra_analysis["environmental"]["lighting_analysis"]:
404
  primary_light = ultra_analysis["environmental"]["lighting_analysis"][0]
405
  if "dramatic" in primary_light:
 
408
  lighting_desc = "graced by gentle natural lighting that brings out intricate facial details and warmth"
409
  elif "soft" in primary_light:
410
  lighting_desc = "softly illuminated to reveal nuanced expressions and character"
411
+
412
  components.append(lighting_desc)
413
+
414
  # 9. ULTRA TECHNICAL SPECIFICATIONS
415
  if ultra_analysis["technical_analysis"]["shot_type"] in ["portrait", "headshot", "close-up"]:
416
  camera_setup = "Shot on Phase One XF IQ4, 85mm f/1.4 lens, f/2.8 aperture"
 
418
  camera_setup = "Shot on Hasselblad X2D, 90mm lens, f/2.8 aperture"
419
  else:
420
  camera_setup = "Shot on Phase One XF, 80mm lens, f/4 aperture"
421
+
422
  components.append(camera_setup)
423
+
424
  # 10. ULTRA QUALITY DESIGNATION
425
  quality_designation = "professional portrait photography"
426
+
427
  if ultra_analysis["demographic"]["cultural_religious"]:
428
  quality_designation = "fine art documentary photography"
429
  elif ultra_analysis["emotional_state"]["primary_emotion"]:
430
  quality_designation = "expressive portrait photography"
431
+
432
  components.append(quality_designation)
433
+
434
  # ULTRA FINAL ASSEMBLY
435
  prompt = ", ".join(components)
436
+
437
  # Ultra cleaning and optimization
438
  prompt = re.sub(r'\s+', ' ', prompt)
439
  prompt = re.sub(r',\s*,+', ',', prompt)
440
  prompt = re.sub(r'\s*,\s*', ', ', prompt)
441
  prompt = prompt.replace(" ,", ",")
442
+
443
  if prompt:
444
  prompt = prompt[0].upper() + prompt[1:]
445
+
446
  return prompt
447
+
448
  def calculate_ultra_supreme_score(self, prompt, ultra_analysis):
449
  """ULTRA SUPREME INTELLIGENCE SCORING"""
450
+
451
  score = 0
452
  breakdown = {}
453
+
454
  # Structure Excellence (15 points)
455
  structure_score = 0
456
  if prompt.startswith(("A", "An")):
 
459
  structure_score += 10
460
  score += structure_score
461
  breakdown["structure"] = structure_score
462
+
463
  # Feature Detection Depth (25 points)
464
  features_score = min(ultra_analysis["intelligence_metrics"]["total_features_detected"] * 2, 25)
465
  score += features_score
466
  breakdown["features"] = features_score
467
+
468
  # Cultural/Religious Awareness (20 points)
469
  cultural_score = min(len(ultra_analysis["demographic"]["cultural_religious"]) * 10, 20)
470
  score += cultural_score
471
  breakdown["cultural"] = cultural_score
472
+
473
  # Emotional Intelligence (15 points)
474
  emotion_score = 0
475
  if ultra_analysis["emotional_state"]["primary_emotion"]:
 
478
  emotion_score += 5
479
  score += emotion_score
480
  breakdown["emotional"] = emotion_score
481
+
482
  # Technical Sophistication (15 points)
483
  tech_score = 0
484
  if "Phase One" in prompt or "Hasselblad" in prompt:
 
489
  tech_score += 5
490
  score += tech_score
491
  breakdown["technical"] = tech_score
492
+
493
  # Environmental Context (10 points)
494
  env_score = 0
495
  if ultra_analysis["environmental"]["setting_type"]:
 
498
  env_score += 5
499
  score += env_score
500
  breakdown["environmental"] = env_score
501
+
502
  return min(score, 100), breakdown
503
+ class UltraSupremeOptimizer:
 
 
504
  def __init__(self):
505
  self.interrogator = None
506
  self.analyzer = UltraSupremeAnalyzer()
507
  self.usage_count = 0
508
  self.device = DEVICE
509
  self.is_initialized = False
510
+
511
  def initialize_model(self):
512
  if self.is_initialized:
513
  return True
514
+
515
  try:
516
  config = Config(
517
  clip_model_name="ViT-L-14/openai",
 
520
  quiet=True,
521
  device=self.device
522
  )
523
+
524
  self.interrogator = Interrogator(config)
525
  self.is_initialized = True
526
+
527
  if self.device == "cpu":
528
  gc.collect()
529
  else:
530
  torch.cuda.empty_cache()
531
+
532
  return True
533
+
534
  except Exception as e:
535
  logger.error(f"Initialization error: {e}")
536
  return False
537
+
538
  def optimize_image(self, image):
539
  if image is None:
540
  return None
541
+
542
  if isinstance(image, np.ndarray):
543
  image = Image.fromarray(image)
544
  elif not isinstance(image, Image.Image):
545
  image = Image.open(image)
546
+
547
  if image.mode != 'RGB':
548
  image = image.convert('RGB')
549
+
550
  max_size = 768 if self.device != "cpu" else 512
551
  if image.size[0] > max_size or image.size[1] > max_size:
552
  image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
553
+
554
  return image
555
+
556
  @spaces.GPU
557
  def generate_ultra_supreme_prompt(self, image):
558
  try:
559
  if not self.is_initialized:
560
  if not self.initialize_model():
561
+ return "❌ Model initialization failed.", "Please refresh and try again.", 0, {}
562
+
563
  if image is None:
564
+ return "❌ Please upload an image.", "No image provided.", 0, {}
565
+
566
  self.usage_count += 1
567
+
568
  image = self.optimize_image(image)
569
  if image is None:
570
+ return "❌ Image processing failed.", "Invalid image format.", 0, {}
571
+
572
  start_time = datetime.now()
573
+
574
  # ULTRA SUPREME TRIPLE CLIP ANALYSIS
575
  logger.info("ULTRA SUPREME ANALYSIS - Maximum intelligence deployment")
576
+
577
  clip_fast = self.interrogator.interrogate_fast(image)
578
  clip_classic = self.interrogator.interrogate_classic(image)
579
  clip_best = self.interrogator.interrogate(image)
580
+
581
  logger.info(f"ULTRA CLIP Results:\nFast: {clip_fast}\nClassic: {clip_classic}\nBest: {clip_best}")
582
+
583
  # ULTRA SUPREME ANALYSIS
584
  ultra_analysis = self.analyzer.ultra_supreme_analysis(clip_fast, clip_classic, clip_best)
585
+
586
  # BUILD ULTRA SUPREME FLUX PROMPT
587
  optimized_prompt = self.analyzer.build_ultra_supreme_prompt(ultra_analysis, [clip_fast, clip_classic, clip_best])
588
+
589
  # CALCULATE ULTRA SUPREME SCORE
590
  score, breakdown = self.analyzer.calculate_ultra_supreme_score(optimized_prompt, ultra_analysis)
591
+
592
  end_time = datetime.now()
593
  duration = (end_time - start_time).total_seconds()
594
+
595
  # Memory cleanup
596
  if self.device == "cpu":
597
  gc.collect()
598
  else:
599
  torch.cuda.empty_cache()
600
+
601
  # ULTRA COMPREHENSIVE ANALYSIS REPORT
602
+ gpu_status = "⚑ ZeroGPU" if torch.cuda.is_available() else "πŸ’» CPU"
603
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604
  # Format detected elements
605
  features = ", ".join(ultra_analysis["facial_ultra"]["facial_hair"]) if ultra_analysis["facial_ultra"]["facial_hair"] else "None detected"
606
  cultural = ", ".join(ultra_analysis["demographic"]["cultural_religious"]) if ultra_analysis["demographic"]["cultural_religious"] else "None detected"
607
  clothing = ", ".join(ultra_analysis["clothing_accessories"]["eyewear"] + ultra_analysis["clothing_accessories"]["headwear"]) if ultra_analysis["clothing_accessories"]["eyewear"] or ultra_analysis["clothing_accessories"]["headwear"] else "None detected"
608
+
609
+ analysis_info = f"""**πŸš€ ULTRA SUPREME ANALYSIS COMPLETE**
610
+ **Processing:** {gpu_status} β€’ {duration:.1f}s β€’ Triple CLIP Ultra Intelligence
611
+ **Ultra Score:** {score}/100 β€’ Breakdown: Structure({breakdown.get('structure',0)}) Features({breakdown.get('features',0)}) Cultural({breakdown.get('cultural',0)}) Emotional({breakdown.get('emotional',0)}) Technical({breakdown.get('technical',0)})
612
  **Generation:** #{self.usage_count}
613
+ **🧠 ULTRA DEEP DETECTION:**
614
+ β€’ **Age Category:** {ultra_analysis["demographic"].get("age_category", "Unspecified").replace("_", " ").title()} (Confidence: {ultra_analysis["demographic"].get("age_confidence", 0)})
615
+ β€’ **Cultural Context:** {cultural}
616
+ β€’ **Facial Features:** {features}
617
+ β€’ **Accessories:** {clothing}
618
+ β€’ **Setting:** {ultra_analysis["environmental"].get("setting_type", "Standard").title()}
619
+ β€’ **Emotion:** {ultra_analysis["emotional_state"].get("primary_emotion", "Neutral").title()}
620
+ β€’ **Total Features:** {ultra_analysis["intelligence_metrics"]["total_features_detected"]}
621
+ **πŸ“Š CLIP ANALYSIS SOURCES:**
622
+ β€’ **Fast:** {clip_fast[:50]}...
623
+ β€’ **Classic:** {clip_classic[:50]}...
624
+ β€’ **Best:** {clip_best[:50]}...
625
+ **⚑ ULTRA OPTIMIZATION:** Applied absolute maximum depth analysis with Pariente AI research rules"""
626
+
627
  return optimized_prompt, analysis_info, score, breakdown
628
+
629
  except Exception as e:
630
  logger.error(f"Ultra supreme generation error: {e}")
631
+ return f"❌ Error: {str(e)}", "Please try with a different image.", 0, {}
632
 
633
  # Initialize the optimizer
634
  optimizer = UltraSupremeOptimizer()
 
637
  """Ultra supreme analysis wrapper"""
638
  try:
639
  prompt, info, score, breakdown = optimizer.generate_ultra_supreme_prompt(image)
640
+
641
  # Ultra enhanced score display
642
  if score >= 95:
643
  color = "#059669"
 
657
  else:
658
  color = "#ef4444"
659
  grade = "NEEDS WORK"
660
+
661
  score_html = f'''
662
  <div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {color}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
663
  <div style="font-size: 3rem; font-weight: 800; color: {color}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
 
665
  <div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">Ultra Supreme Intelligence Score</div>
666
  </div>
667
  '''
668
+
669
  return prompt, info, score_html
670
+
671
  except Exception as e:
672
  logger.error(f"Ultra supreme wrapper error: {e}")
673
+ return "❌ Processing failed", f"Error: {str(e)}", '<div style="text-align: center; color: red;">Error</div>'
674
 
675
  def clear_outputs():
676
  gc.collect()
 
681
  def create_interface():
682
  css = """
683
  @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
684
+
685
  .gradio-container {
686
  max-width: 1600px !important;
687
  margin: 0 auto !important;
688
  font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
689
+ background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%) !important;
690
  }
691
+
692
  .main-header {
693
  text-align: center;
694
  padding: 3rem 0 4rem 0;
 
700
  position: relative;
701
  overflow: hidden;
702
  }
703
+
704
  .main-header::before {
705
  content: '';
706
  position: absolute;
 
711
  background: linear-gradient(45deg, rgba(59, 130, 246, 0.1) 0%, rgba(147, 51, 234, 0.1) 50%, rgba(236, 72, 153, 0.1) 100%);
712
  z-index: 1;
713
  }
714
+
715
  .main-title {
716
  font-size: 4rem !important;
717
  font-weight: 900 !important;
 
724
  position: relative;
725
  z-index: 2;
726
  }
727
+
728
  .subtitle {
729
  font-size: 1.5rem !important;
730
  font-weight: 500 !important;
 
733
  position: relative;
734
  z-index: 2;
735
  }
736
+
737
  .prompt-output {
738
  font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace !important;
739
  font-size: 15px !important;
 
745
  box-shadow: 0 20px 50px -10px rgba(0, 0, 0, 0.1) !important;
746
  transition: all 0.3s ease !important;
747
  }
748
+
749
  .prompt-output:hover {
750
  box-shadow: 0 25px 60px -5px rgba(0, 0, 0, 0.15) !important;
751
  transform: translateY(-2px) !important;
752
  }
753
  """
754
+
755
  with gr.Blocks(
756
  theme=gr.themes.Soft(),
757
+ title="πŸš€ Ultra Supreme Flux Optimizer",
758
  css=css
759
  ) as interface:
760
+
761
  gr.HTML("""
762
  <div class="main-header">
763
+ <div class="main-title">πŸš€ ULTRA SUPREME FLUX OPTIMIZER</div>
764
+ <div class="subtitle">Maximum Absolute Intelligence β€’ Triple CLIP Analysis β€’ Zero Compromise β€’ Research Supremacy</div>
765
  </div>
766
  """)
767
+
768
  with gr.Row():
769
  with gr.Column(scale=1):
770
+ gr.Markdown("## 🧠 Ultra Supreme Analysis Engine")
771
+
772
  image_input = gr.Image(
773
  label="Upload image for MAXIMUM intelligence analysis",
774
  type="pil",
775
  height=500
776
  )
777
+
778
  analyze_btn = gr.Button(
779
+ "πŸš€ ULTRA SUPREME ANALYSIS",
780
  variant="primary",
781
  size="lg"
782
  )
783
+
784
  gr.Markdown("""
785
+ ### πŸ”¬ Maximum Absolute Intelligence
786
+
787
+ **πŸš€ Triple CLIP Interrogation:**
788
+ β€’ Fast analysis for broad contextual mapping
789
+ β€’ Classic analysis for detailed feature extraction
790
+ β€’ Best analysis for maximum depth intelligence
791
+
792
+ **🧠 Ultra Deep Feature Extraction:**
793
+ β€’ Micro-age detection with confidence scoring
794
+ β€’ Cultural/religious context with semantic analysis
795
+ β€’ Facial micro-features and expression mapping
796
+ β€’ Emotional state and micro-expression detection
797
+ β€’ Environmental lighting and atmospheric analysis
798
+ β€’ Body language and pose interpretation
799
+ β€’ Technical photography optimization
800
+
801
+ **⚑ Absolute Maximum Intelligence** - No configuration, no limits, no compromise.
802
  """)
803
+
804
  with gr.Column(scale=1):
805
+ gr.Markdown("## ⚑ Ultra Supreme Result")
806
+
807
  prompt_output = gr.Textbox(
808
+ label="πŸš€ Ultra Supreme Optimized Flux Prompt",
809
  placeholder="Upload an image to witness absolute maximum intelligence analysis...",
810
  lines=12,
811
  max_lines=20,
812
  elem_classes=["prompt-output"],
813
  show_copy_button=True
814
  )
815
+
816
  score_output = gr.HTML(
817
  value='<div style="text-align: center; padding: 1rem;"><div style="font-size: 2rem; color: #ccc;">--</div><div style="font-size: 0.875rem; color: #999;">Ultra Supreme Score</div></div>'
818
  )
819
+
820
  info_output = gr.Markdown(value="")
821
+
822
+ clear_btn = gr.Button("πŸ—‘οΈ Clear Ultra Analysis", size="sm")
823
+
824
  # Event handlers
825
  analyze_btn.click(
826
  fn=process_ultra_supreme_analysis,
827
  inputs=[image_input],
828
  outputs=[prompt_output, info_output, score_output]
829
  )
830
+
831
  clear_btn.click(
832
  fn=clear_outputs,
833
  outputs=[prompt_output, info_output, score_output]
834
  )
835
+
836
  gr.Markdown("""
837
  ---
838
+ ### πŸ† Ultra Supreme Research Foundation
839
+
840
  This system represents the **absolute pinnacle** of image analysis and Flux prompt optimization. Using triple CLIP interrogation,
841
  ultra-deep feature extraction, cultural context awareness, and emotional intelligence mapping, it achieves maximum possible
842
  understanding and applies research-validated Flux rules with supreme intelligence.
843
+
844
+ **πŸ”¬ Pariente AI Research Laboratory** β€’ **πŸš€ Ultra Supreme Intelligence Engine**
845
  """)
846
+
847
  return interface
848
 
849
  # Launch the application