File size: 13,864 Bytes
7fcd557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24a059f
 
 
 
 
 
c308901
7fcd557
c308901
24a059f
 
 
 
 
 
7fcd557
24a059f
 
c308901
24a059f
7fcd557
24a059f
7fcd557
 
 
24a059f
 
 
 
7fcd557
 
 
24a059f
7fcd557
e4f66e8
 
24a059f
e4f66e8
 
 
7fcd557
24a059f
 
 
 
e4f66e8
 
7fcd557
24a059f
 
c308901
7fcd557
24a059f
7fcd557
e4f66e8
c308901
ca6bd07
 
9f7748a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6bd07
9f7748a
 
 
ca6bd07
9f7748a
 
 
 
 
 
 
 
ca6bd07
9f7748a
 
8f89713
 
 
 
 
 
104bf5a
8f89713
104bf5a
8f89713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd557
 
c308901
8f89713
7fcd557
8f89713
7fcd557
 
 
104bf5a
ca6bd07
8f89713
ca6bd07
 
 
8f89713
7fcd557
8f89713
7fcd557
104bf5a
7fcd557
8f89713
 
7fcd557
 
 
 
 
 
 
8f89713
 
 
 
 
 
7fcd557
 
 
 
 
8f89713
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# import gradio as gr
# import pandas as pd
# import os
# import re
# from datetime import datetime

# LEADERBOARD_FILE = "leaderboard.csv"  # File to store leaderboard data

# def clean_answer(answer):
#     if pd.isna(answer):
#         return None
#     answer = str(answer)
#     clean = re.sub(r'[^A-Da-d]', '', answer)
#     if clean:
#         first_letter = clean[0].upper()
#         if first_letter in ['A', 'B', 'C', 'D']:
#             return first_letter
#     return None

# def write_evaluation_results(results, output_file):
#     os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
#     timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

#     output_text = [
#         f"Evaluation Results for Model: {results['model_name']}",
#         f"Timestamp: {timestamp}",
#         "-" * 50,
#         f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
#         f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
#         f"Total Questions: {results['total_questions']}",
#         f"Valid Predictions: {results['valid_predictions']}",
#         f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
#         f"Correct Predictions: {results['correct_predictions']}",
#         "\nPerformance by Field:",
#         "-" * 50
#     ]

#     for field, metrics in results['field_performance'].items():
#         field_results = [
#             f"\nField: {field}",
#             f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
#             f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
#             f"Correct: {metrics['correct']}/{metrics['total']}",
#             f"Invalid predictions: {metrics['invalid']}"
#         ]
#         output_text.extend(field_results)

#     with open(output_file, 'w') as f:
#         f.write('\n'.join(output_text))
#     print('\n'.join(output_text))
#     print(f"\nResults have been saved to: {output_file}")

# def update_leaderboard(results):
#     # Add results to the leaderboard file
#     new_entry = {
#         "Model Name": results['model_name'],
#         "Overall Accuracy": f"{results['overall_accuracy']:.2%}",
#         "Valid Accuracy": f"{results['valid_accuracy']:.2%}",
#         "Correct Predictions": results['correct_predictions'],
#         "Total Questions": results['total_questions'],
#         "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
#     }
#     leaderboard_df = pd.DataFrame([new_entry])
#     if os.path.exists(LEADERBOARD_FILE):
#         existing_df = pd.read_csv(LEADERBOARD_FILE)
#         leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
#     leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)

# def display_leaderboard():
#     if not os.path.exists(LEADERBOARD_FILE):
#         return "Leaderboard is empty."
#     leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
#     return leaderboard_df.to_markdown(index=False)

# def evaluate_predictions(prediction_file):
#     ground_truth_file = "ground_truth.csv"  # Specify the path to the ground truth file
#     if not prediction_file:
#         return "Prediction file not uploaded", None

#     if not os.path.exists(ground_truth_file):
#         return "Ground truth file not found", None

#     try:
#         predictions_df = pd.read_csv(prediction_file.name)
#         ground_truth_df = pd.read_csv(ground_truth_file)
        
#         # Extract model name
#         try:
#             filename = os.path.basename(prediction_file.name)
#             if "_" in filename and "." in filename:
#                 model_name = filename.split('_')[1].split('.')[0]
#             else:
#                 model_name = "unknown_model"
#         except IndexError:
#             model_name = "unknown_model"

#         # Merge dataframes
#         merged_df = pd.merge(
#             predictions_df, 
#             ground_truth_df, 
#             on='question_id', 
#             how='inner'
#         )
#         merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
#         invalid_predictions = merged_df['pred_answer'].isna().sum()
#         valid_predictions = merged_df.dropna(subset=['pred_answer'])
#         correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
#         total_predictions = len(merged_df)
#         total_valid_predictions = len(valid_predictions)

#         overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
#         valid_accuracy = (
#             correct_predictions / total_valid_predictions
#             if total_valid_predictions > 0
#             else 0
#         )

#         field_metrics = {}
#         for field in merged_df['Field'].unique():
#             field_data = merged_df[merged_df['Field'] == field]
#             field_valid_data = field_data.dropna(subset=['pred_answer'])

#             field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
#             field_total = len(field_data)
#             field_valid_total = len(field_valid_data)
#             field_invalid = field_total - field_valid_total

#             field_metrics[field] = {
#                 'accuracy': field_correct / field_total if field_total > 0 else 0,
#                 'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
#                 'correct': field_correct,
#                 'total': field_total,
#                 'invalid': field_invalid
#             }

#         results = {
#             'model_name': model_name,
#             'overall_accuracy': overall_accuracy,
#             'valid_accuracy': valid_accuracy,
#             'total_questions': total_predictions,
#             'valid_predictions': total_valid_predictions,
#             'invalid_predictions': invalid_predictions,
#             'correct_predictions': correct_predictions,
#             'field_performance': field_metrics
#         }

#         update_leaderboard(results)
#         output_file = "evaluation_results.txt"
#         write_evaluation_results(results, output_file)
#         return "Evaluation completed successfully! Leaderboard updated.", output_file

#     except Exception as e:
#         return f"Error during evaluation: {str(e)}", None

# # Gradio Interface
# description = "Upload a prediction CSV file to evaluate predictions against the ground truth and update the leaderboard."

# demo = gr.Blocks()

# with demo:
#     gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
#     with gr.Tab("Evaluate"):
#         file_input = gr.File(label="Upload Prediction CSV")
#         eval_status = gr.Textbox(label="Evaluation Status")
#         eval_results_file = gr.File(label="Download Evaluation Results")
#         eval_button = gr.Button("Evaluate")
#         eval_button.click(
#             evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
#         )
#     with gr.Tab("Leaderboard"):
#         leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
#         refresh_button = gr.Button("Refresh Leaderboard")
#         refresh_button.click(display_leaderboard, outputs=leaderboard_text)

# if __name__ == "__main__":
#     demo.launch()


import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime

LEADERBOARD_FILE = "leaderboard.csv"  # File to store leaderboard data
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

def clean_answer(answer):
    if pd.isna(answer):
        return None
    answer = str(answer)
    clean = re.sub(r'[^A-Da-d]', '', answer)
    if clean:
        return clean[0].upper()
    return None


def evaluate_predictions(prediction_file):
    ground_truth_file = "ground_truth.csv"
    if not os.path.exists(ground_truth_file):
        return "Ground truth file not found."
    if not prediction_file:
        return "Prediction file not uploaded."

    try:
        predictions_df = pd.read_csv(prediction_file.name)
        ground_truth_df = pd.read_csv(ground_truth_file)
        model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]

        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name,
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        update_leaderboard(results)
        return "Evaluation completed successfully! Leaderboard updated."
    except Exception as e:
        return f"Error during evaluation: {str(e)}"


# Build Gradio App

def update_leaderboard(results):
    """
    Update the leaderboard file with new results.
    """
    new_entry = {
        "Model Name": results['model_name'],
        "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
        "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
        "Correct Predictions": results['correct_predictions'],
        "Total Questions": results['total_questions'],
        "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
    }

    # Convert new entry to DataFrame
    new_entry_df = pd.DataFrame([new_entry])

    # Append to leaderboard file
    if not os.path.exists(LEADERBOARD_FILE):
        # If file does not exist, create it with headers
        new_entry_df.to_csv(LEADERBOARD_FILE, index=False)
    else:
        # Append without headers
        new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)


def load_leaderboard():
    """
    Load the leaderboard from the leaderboard file.
    """
    if not os.path.exists(LEADERBOARD_FILE):
        return pd.DataFrame({
            "Model Name": [],
            "Overall Accuracy": [],
            "Valid Accuracy": [],
            "Correct Predictions": [],
            "Total Questions": [],
            "Timestamp": [],
        })
    return pd.read_csv(LEADERBOARD_FILE)


def evaluate_predictions_and_update_leaderboard(prediction_file):
    """
    Evaluate predictions and update the leaderboard.
    """
    ground_truth_file = "ground_truth.csv"
    if not os.path.exists(ground_truth_file):
        return "Ground truth file not found.", load_leaderboard()
    if not prediction_file:
        return "Prediction file not uploaded.", load_leaderboard()

    try:
        predictions_df = pd.read_csv(prediction_file.name)
        ground_truth_df = pd.read_csv(ground_truth_file)
        model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]

        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name,
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        update_leaderboard(results)
        return "Evaluation completed successfully! Leaderboard updated.", load_leaderboard()
    except Exception as e:
        return f"Error during evaluation: {str(e)}", load_leaderboard()

# Build Gradio App
with gr.Blocks() as demo:
    gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
    
    with gr.Tabs():
        # Submission Tab
        with gr.TabItem("πŸ… Submission"):
            file_input = gr.File(label="Upload Prediction CSV")
            eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
            leaderboard_table_preview = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard (Preview)",
                interactive=False,
                wrap=True,
            )
            eval_button = gr.Button("Evaluate and Update Leaderboard")
            eval_button.click(
                evaluate_predictions_and_update_leaderboard,
                inputs=[file_input],
                outputs=[eval_status, leaderboard_table_preview],
            )
        
        # Leaderboard Tab
        with gr.TabItem("πŸ… Leaderboard"):
            leaderboard_table = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard",
                interactive=False,
                wrap=True,
            )
            refresh_button = gr.Button("Refresh Leaderboard")
            refresh_button.click(
                lambda: load_leaderboard(),
                inputs=[],
                outputs=[leaderboard_table],
            )

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

demo.launch()