Update app.py
Browse files
app.py
CHANGED
@@ -45,27 +45,75 @@ def evaluate_predictions(prediction_file):
|
|
45 |
try:
|
46 |
predictions_df = pd.read_csv(prediction_file.name)
|
47 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
53 |
-
|
|
|
|
|
54 |
total_predictions = len(merged_df)
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
results = {
|
58 |
'model_name': model_name,
|
59 |
'overall_accuracy': overall_accuracy,
|
60 |
-
'
|
61 |
'total_questions': total_predictions,
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
return "Evaluation completed successfully! Leaderboard updated.", LEADERBOARD_FILE
|
67 |
except Exception as e:
|
68 |
-
return f"Error: {str(e)}", None
|
|
|
69 |
|
70 |
# Gradio Interface with Leaderboard
|
71 |
def display_leaderboard():
|
|
|
45 |
try:
|
46 |
predictions_df = pd.read_csv(prediction_file.name)
|
47 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
48 |
+
|
49 |
+
# Extract model name
|
50 |
+
try:
|
51 |
+
filename = os.path.basename(prediction_file.name)
|
52 |
+
if "_" in filename and "." in filename:
|
53 |
+
model_name = filename.split('_')[1].split('.')[0]
|
54 |
+
else:
|
55 |
+
model_name = "unknown_model"
|
56 |
+
except IndexError:
|
57 |
+
model_name = "unknown_model"
|
58 |
|
59 |
+
# Merge dataframes
|
60 |
+
merged_df = pd.merge(
|
61 |
+
predictions_df,
|
62 |
+
ground_truth_df,
|
63 |
+
on='question_id',
|
64 |
+
how='inner'
|
65 |
+
)
|
66 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
67 |
+
invalid_predictions = merged_df['pred_answer'].isna().sum()
|
68 |
+
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
69 |
+
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
70 |
total_predictions = len(merged_df)
|
71 |
+
total_valid_predictions = len(valid_predictions)
|
72 |
+
|
73 |
+
# Ensure no division by zero
|
74 |
+
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
75 |
+
valid_accuracy = (
|
76 |
+
correct_predictions / total_valid_predictions
|
77 |
+
if total_valid_predictions > 0
|
78 |
+
else 0
|
79 |
+
)
|
80 |
+
|
81 |
+
field_metrics = {}
|
82 |
+
for field in merged_df['Field'].unique():
|
83 |
+
field_data = merged_df[merged_df['Field'] == field]
|
84 |
+
field_valid_data = field_data.dropna(subset=['pred_answer'])
|
85 |
+
|
86 |
+
field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
87 |
+
field_total = len(field_data)
|
88 |
+
field_valid_total = len(field_valid_data)
|
89 |
+
field_invalid = field_total - field_valid_total
|
90 |
+
|
91 |
+
field_metrics[field] = {
|
92 |
+
'accuracy': field_correct / field_total if field_total > 0 else 0,
|
93 |
+
'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
94 |
+
'correct': field_correct,
|
95 |
+
'total': field_total,
|
96 |
+
'invalid': field_invalid
|
97 |
+
}
|
98 |
|
99 |
results = {
|
100 |
'model_name': model_name,
|
101 |
'overall_accuracy': overall_accuracy,
|
102 |
+
'valid_accuracy': valid_accuracy,
|
103 |
'total_questions': total_predictions,
|
104 |
+
'valid_predictions': total_valid_predictions,
|
105 |
+
'invalid_predictions': invalid_predictions,
|
106 |
+
'correct_predictions': correct_predictions,
|
107 |
+
'field_performance': field_metrics
|
108 |
}
|
109 |
|
110 |
+
output_file = "evaluation_results.txt"
|
111 |
+
write_evaluation_results(results, output_file)
|
112 |
+
return "Evaluation completed successfully!", output_file
|
113 |
|
|
|
114 |
except Exception as e:
|
115 |
+
return f"Error during evaluation: {str(e)}", None
|
116 |
+
|
117 |
|
118 |
# Gradio Interface with Leaderboard
|
119 |
def display_leaderboard():
|