File size: 13,636 Bytes
7fcd557
747c6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcbc7b
747c6f5
24a059f
 
 
 
747c6f5
 
 
24a059f
747c6f5
 
2810005
 
 
747c6f5
 
7fcd557
c308901
747c6f5
fb73da9
2810005
fb73da9
747c6f5
2810005
747c6f5
 
 
 
 
2810005
747c6f5
 
2810005
747c6f5
6bcbc7b
747c6f5
6bcbc7b
2810005
6bcbc7b
747c6f5
2810005
747c6f5
 
 
 
 
2810005
747c6f5
 
 
 
 
 
 
 
 
 
 
24a059f
9f7748a
 
2810005
9f7748a
747c6f5
 
 
 
 
 
 
 
2810005
 
747c6f5
 
 
 
 
 
9f7748a
 
 
 
 
 
 
 
747c6f5
9f7748a
747c6f5
 
 
 
9f7748a
747c6f5
9f7748a
747c6f5
9f7748a
747c6f5
 
 
 
 
 
 
9f7748a
1fe4357
8f89713
1fe4357
8f89713
747c6f5
 
104bf5a
8f89713
104bf5a
8f89713
 
747c6f5
8f89713
 
 
 
6bcbc7b
8f89713
 
 
 
 
6bcbc7b
8f89713
 
 
 
1fe4357
8f89713
 
 
 
 
 
1fe4357
 
 
 
 
 
8f89713
 
 
6bcbc7b
7fcd557
2810005
8f89713
7fcd557
8f89713
7fcd557
 
1fe4357
 
7fcd557
104bf5a
ca6bd07
8f89713
ca6bd07
 
 
8f89713
7fcd557
1fe4357
 
104bf5a
7fcd557
8f89713
 
7fcd557
 
 
 
 
 
 
8f89713
 
 
 
 
 
7fcd557
 
 
 
 
747c6f5
2810005
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

# # demo.launch()
# import gradio as gr
# import pandas as pd
# import os
# import re
# from datetime import datetime

# LEADERBOARD_FILE = "leaderboard.csv"  # File to store all submissions persistently
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

# def initialize_leaderboard_file():
#     """
#     Ensure the leaderboard file exists and has the correct headers.
#     """
#     if not os.path.exists(LEADERBOARD_FILE):
#         # Create the file with headers
#         pd.DataFrame(columns=[
#             "Model Name", "Overall Accuracy", "Valid Accuracy",
#             "Correct Predictions", "Total Questions", "Timestamp"
#         ]).to_csv(LEADERBOARD_FILE, index=False)
#     else:
#         # Check if the file is empty and write headers if needed
#         if os.stat(LEADERBOARD_FILE).st_size == 0:
#             pd.DataFrame(columns=[
#                 "Model Name", "Overall Accuracy", "Valid Accuracy",
#                 "Correct Predictions", "Total Questions", "Timestamp"
#             ]).to_csv(LEADERBOARD_FILE, index=False)

# def clean_answer(answer):
#     """
#     Clean and normalize the predicted answers.
#     """
#     if pd.isna(answer):
#         return None
#     answer = str(answer)
#     clean = re.sub(r'[^A-Da-d]', '', answer)
#     if clean:
#         return clean[0].upper()
#     return None

# def update_leaderboard(results):
#     """
#     Append new submission results to the leaderboard file.
#     """
#     new_entry = {
#         "Model Name": results['model_name'],
#         "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
#         "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
#         "Correct Predictions": results['correct_predictions'],
#         "Total Questions": results['total_questions'],
#         "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
#     }

#     new_entry_df = pd.DataFrame([new_entry])
#     new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)

# def load_leaderboard():
#     """
#     Load all submissions from the leaderboard file.
#     """
#     if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
#         return pd.DataFrame({
#             "Model Name": [],
#             "Overall Accuracy": [],
#             "Valid Accuracy": [],
#             "Correct Predictions": [],
#             "Total Questions": [],
#             "Timestamp": [],
#         })
#     return pd.read_csv(LEADERBOARD_FILE)

# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
#     """
#     Evaluate predictions and optionally add results to the leaderboard.
#     """
#     ground_truth_file = "ground_truth.csv"
#     if not os.path.exists(ground_truth_file):
#         return "Ground truth file not found.", load_leaderboard()
#     if not prediction_file:
#         return "Prediction file not uploaded.", load_leaderboard()

#     try:
#         # Load predictions and ground truth
#         predictions_df = pd.read_csv(prediction_file.name)
#         ground_truth_df = pd.read_csv(ground_truth_file)

#         # Merge predictions with ground truth
#         merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
#         merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

#         # Evaluate predictions
#         valid_predictions = merged_df.dropna(subset=['pred_answer'])
#         correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
#         total_predictions = len(merged_df)
#         total_valid_predictions = len(valid_predictions)

#         # Calculate accuracy
#         overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
#         valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

#         results = {
#             'model_name': model_name if model_name else "Unknown Model",
#             'overall_accuracy': overall_accuracy,
#             'valid_accuracy': valid_accuracy,
#             'correct_predictions': correct_predictions,
#             'total_questions': total_predictions,
#         }

#         # Update leaderboard only if opted in
#         if add_to_leaderboard:
#             update_leaderboard(results)
#             return "Evaluation completed and added to leaderboard.", load_leaderboard()
#         else:
#             return "Evaluation completed but not added to leaderboard.", load_leaderboard()
#     except Exception as e:
#         return f"Error during evaluation: {str(e)}", load_leaderboard()

# # Initialize leaderboard file
# initialize_leaderboard_file()

# # Gradio Interface
# with gr.Blocks() as demo:
#     gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
    
#     with gr.Tabs():
#         # Submission Tab
#         with gr.TabItem("πŸ… Submission"):
#             file_input = gr.File(label="Upload Prediction CSV")
#             model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
#             add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
#             eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
#             leaderboard_table_preview = gr.Dataframe(
#                 value=load_leaderboard(),
#                 label="Leaderboard (Preview)",
#                 interactive=False,
#                 wrap=True,
#             )
#             eval_button = gr.Button("Evaluate and Update Leaderboard")
#             eval_button.click(
#                 evaluate_predictions,
#                 inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
#                 outputs=[eval_status, leaderboard_table_preview],
#             )
        
#         # Leaderboard Tab
#         with gr.TabItem("πŸ… Leaderboard"):
#             leaderboard_table = gr.Dataframe(
#                 value=load_leaderboard(),
#                 label="Leaderboard",
#                 interactive=False,
#                 wrap=True,
#             )
#             refresh_button = gr.Button("Refresh Leaderboard")
#             refresh_button.click(
#                 lambda: load_leaderboard(),
#                 inputs=[],
#                 outputs=[leaderboard_table],
#             )

#     gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

# demo.launch()

import gradio as gr
import pandas as pd
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from datasets import Dataset
import os

# Constants for Hugging Face repositories
HF_TOKEN = os.getenv("HF_TOKEN")  # Hugging Face token stored as an environment variable
if not HF_TOKEN:
    raise ValueError("HF_TOKEN is not set. Please add it as a secret in your Hugging Face Space.")

LEADERBOARD_REPO = "SondosMB/leaderboard-dataset"  # Replace with your leaderboard dataset name
GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset"  # Replace with your ground truth dataset name
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")

def load_ground_truth():
    """
    Load the ground truth file from a gated Hugging Face dataset.
    """
    try:
        print("Fetching ground truth file...")
        ground_truth_path = hf_hub_download(
            repo_id=GROUND_TRUTH_REPO,
            filename="ground_truth.csv",
            use_auth_token=HF_TOKEN
        )
        print(f"Ground truth file downloaded: {ground_truth_path}")
        return pd.read_csv(ground_truth_path)
    except Exception as e:
        print(f"Error loading ground truth file: {e}")
        return None

def load_leaderboard():
    """
    Load the leaderboard from a gated Hugging Face dataset.
    """
    try:
        print("Fetching leaderboard file...")
        leaderboard_path = hf_hub_download(
            repo_id=LEADERBOARD_REPO,
            filename="leaderboard.csv",
            use_auth_token=HF_TOKEN
        )
        print(f"Leaderboard file downloaded: {leaderboard_path}")
        return pd.read_csv(leaderboard_path)
    except Exception as e:
        print(f"Error loading leaderboard: {e}")
        return pd.DataFrame({
            "Model Name": [],
            "Overall Accuracy": [],
            "Valid Accuracy": [],
            "Correct Predictions": [],
            "Total Questions": [],
            "Timestamp": [],
        })

def update_leaderboard(results):
    """
    Append new submission results to the gated leaderboard dataset.
    """
    try:
        # Load existing leaderboard or create a new one
        leaderboard_path = hf_hub_download(
            repo_id=LEADERBOARD_REPO,
            filename="leaderboard.csv",
            use_auth_token=HF_TOKEN
        )
        df = pd.read_csv(leaderboard_path)
    except Exception as e:
        print(f"Error loading leaderboard: {e}")
        df = pd.DataFrame(columns=[
            "Model Name", "Overall Accuracy", "Valid Accuracy",
            "Correct Predictions", "Total Questions", "Timestamp"
        ])

    # Add new entry
    new_entry = {
        "Model Name": results['model_name'],
        "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
        "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
        "Correct Predictions": results['correct_predictions'],
        "Total Questions": results['total_questions'],
        "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
    }
    df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)

    # Save locally and push updated dataset to Hugging Face
    df.to_csv("leaderboard.csv", index=False)
    dataset = Dataset.from_pandas(df)
    dataset.push_to_hub(LEADERBOARD_REPO, split="train", private=True)

def clean_answer(answer):
    """
    Clean and normalize the predicted answers.
    """
    if pd.isna(answer):
        return None
    answer = str(answer)
    clean = re.sub(r'[^A-Da-d]', '', answer)
    if clean:
        return clean[0].upper()
    return None

def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
    """
    Evaluate predictions and optionally add results to the leaderboard.
    """
    ground_truth_df = load_ground_truth()
    if ground_truth_df is None:
        return "Ground truth file not found.", load_leaderboard()
    if not prediction_file:
        return "Prediction file not uploaded.", load_leaderboard()

    try:
        # Load predictions and merge with ground truth
        predictions_df = pd.read_csv(prediction_file.name)
        merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
        merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)

        # Evaluate predictions
        valid_predictions = merged_df.dropna(subset=['pred_answer'])
        correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
        total_predictions = len(merged_df)
        total_valid_predictions = len(valid_predictions)

        # Calculate accuracy
        overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
        valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0

        results = {
            'model_name': model_name if model_name else "Unknown Model",
            'overall_accuracy': overall_accuracy,
            'valid_accuracy': valid_accuracy,
            'correct_predictions': correct_predictions,
            'total_questions': total_predictions,
        }

        # Update leaderboard only if opted in
        if add_to_leaderboard:
            update_leaderboard(results)
            return "Evaluation completed and added to leaderboard.", load_leaderboard()
        else:
            return "Evaluation completed but not added to leaderboard.", load_leaderboard()
    except Exception as e:
        return f"Error during evaluation: {str(e)}", load_leaderboard()

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Secure Prediction Evaluation Tool with Gated Leaderboard")
    
    with gr.Tabs():
        # Submission Tab
        with gr.TabItem("πŸ… Submission"):
            file_input = gr.File(label="Upload Prediction CSV")
            model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
            add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
            eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
            leaderboard_table_preview = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard (Preview)",
                interactive=False,
                wrap=True,
            )
            eval_button = gr.Button("Evaluate and Update Leaderboard")
            eval_button.click(
                evaluate_predictions,
                inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
                outputs=[eval_status, leaderboard_table_preview],
            )
        
        # Leaderboard Tab
        with gr.TabItem("πŸ… Leaderboard"):
            leaderboard_table = gr.Dataframe(
                value=load_leaderboard(),
                label="Leaderboard",
                interactive=False,
                wrap=True,
            )
            refresh_button = gr.Button("Refresh Leaderboard")
            refresh_button.click(
                lambda: load_leaderboard(),
                inputs=[],
                outputs=[leaderboard_table],
            )

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**")

demo.launch()