SondosMB commited on
Commit
2810005
·
verified ·
1 Parent(s): d4929fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -10
app.py CHANGED
@@ -162,7 +162,6 @@
162
 
163
  # demo.launch()
164
 
165
-
166
  import gradio as gr
167
  import pandas as pd
168
  import re
@@ -173,38 +172,42 @@ import os
173
 
174
  # Constants for Hugging Face repositories
175
  HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
 
 
 
176
  LEADERBOARD_REPO = "SondosMB/leaderboard-dataset" # Replace with your leaderboard dataset name
177
  GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset" # Replace with your ground truth dataset name
178
  LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
179
 
180
  def load_ground_truth():
181
  """
182
- Load the ground truth file from a private Hugging Face dataset.
183
  """
184
  try:
185
- print("Attempting to fetch ground truth...")
186
  ground_truth_path = hf_hub_download(
187
  repo_id=GROUND_TRUTH_REPO,
188
  filename="ground_truth.csv",
189
  use_auth_token=HF_TOKEN
190
  )
191
- print(f"Ground truth file downloaded to: {ground_truth_path}")
192
  return pd.read_csv(ground_truth_path)
193
  except Exception as e:
194
- print(f"Error loading ground truth: {e}")
195
  return None
196
 
197
-
198
  def load_leaderboard():
199
  """
200
- Load the leaderboard from a private Hugging Face dataset.
201
  """
202
  try:
 
203
  leaderboard_path = hf_hub_download(
204
  repo_id=LEADERBOARD_REPO,
205
  filename="leaderboard.csv",
206
  use_auth_token=HF_TOKEN
207
  )
 
208
  return pd.read_csv(leaderboard_path)
209
  except Exception as e:
210
  print(f"Error loading leaderboard: {e}")
@@ -219,7 +222,7 @@ def load_leaderboard():
219
 
220
  def update_leaderboard(results):
221
  """
222
- Append new submission results to the private leaderboard dataset.
223
  """
224
  try:
225
  # Load existing leaderboard or create a new one
@@ -229,7 +232,8 @@ def update_leaderboard(results):
229
  use_auth_token=HF_TOKEN
230
  )
231
  df = pd.read_csv(leaderboard_path)
232
- except:
 
233
  df = pd.DataFrame(columns=[
234
  "Model Name", "Overall Accuracy", "Valid Accuracy",
235
  "Correct Predictions", "Total Questions", "Timestamp"
@@ -308,7 +312,7 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
308
 
309
  # Gradio Interface
310
  with gr.Blocks() as demo:
311
- gr.Markdown("# Secure Prediction Evaluation Tool with Private Leaderboard")
312
 
313
  with gr.Tabs():
314
  # Submission Tab
@@ -350,3 +354,4 @@ with gr.Blocks() as demo:
350
  demo.launch()
351
 
352
 
 
 
162
 
163
  # demo.launch()
164
 
 
165
  import gradio as gr
166
  import pandas as pd
167
  import re
 
172
 
173
  # Constants for Hugging Face repositories
174
  HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
175
+ if not HF_TOKEN:
176
+ raise ValueError("HF_TOKEN is not set. Please add it as a secret in your Hugging Face Space.")
177
+
178
  LEADERBOARD_REPO = "SondosMB/leaderboard-dataset" # Replace with your leaderboard dataset name
179
  GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset" # Replace with your ground truth dataset name
180
  LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
181
 
182
  def load_ground_truth():
183
  """
184
+ Load the ground truth file from a gated Hugging Face dataset.
185
  """
186
  try:
187
+ print("Fetching ground truth file...")
188
  ground_truth_path = hf_hub_download(
189
  repo_id=GROUND_TRUTH_REPO,
190
  filename="ground_truth.csv",
191
  use_auth_token=HF_TOKEN
192
  )
193
+ print(f"Ground truth file downloaded: {ground_truth_path}")
194
  return pd.read_csv(ground_truth_path)
195
  except Exception as e:
196
+ print(f"Error loading ground truth file: {e}")
197
  return None
198
 
 
199
  def load_leaderboard():
200
  """
201
+ Load the leaderboard from a gated Hugging Face dataset.
202
  """
203
  try:
204
+ print("Fetching leaderboard file...")
205
  leaderboard_path = hf_hub_download(
206
  repo_id=LEADERBOARD_REPO,
207
  filename="leaderboard.csv",
208
  use_auth_token=HF_TOKEN
209
  )
210
+ print(f"Leaderboard file downloaded: {leaderboard_path}")
211
  return pd.read_csv(leaderboard_path)
212
  except Exception as e:
213
  print(f"Error loading leaderboard: {e}")
 
222
 
223
  def update_leaderboard(results):
224
  """
225
+ Append new submission results to the gated leaderboard dataset.
226
  """
227
  try:
228
  # Load existing leaderboard or create a new one
 
232
  use_auth_token=HF_TOKEN
233
  )
234
  df = pd.read_csv(leaderboard_path)
235
+ except Exception as e:
236
+ print(f"Error loading leaderboard: {e}")
237
  df = pd.DataFrame(columns=[
238
  "Model Name", "Overall Accuracy", "Valid Accuracy",
239
  "Correct Predictions", "Total Questions", "Timestamp"
 
312
 
313
  # Gradio Interface
314
  with gr.Blocks() as demo:
315
+ gr.Markdown("# Secure Prediction Evaluation Tool with Gated Leaderboard")
316
 
317
  with gr.Tabs():
318
  # Submission Tab
 
354
  demo.launch()
355
 
356
 
357
+