Update app.py
Browse files
app.py
CHANGED
@@ -162,7 +162,6 @@
|
|
162 |
|
163 |
# demo.launch()
|
164 |
|
165 |
-
|
166 |
import gradio as gr
|
167 |
import pandas as pd
|
168 |
import re
|
@@ -173,38 +172,42 @@ import os
|
|
173 |
|
174 |
# Constants for Hugging Face repositories
|
175 |
HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
|
|
|
|
|
|
|
176 |
LEADERBOARD_REPO = "SondosMB/leaderboard-dataset" # Replace with your leaderboard dataset name
|
177 |
GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset" # Replace with your ground truth dataset name
|
178 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
179 |
|
180 |
def load_ground_truth():
|
181 |
"""
|
182 |
-
Load the ground truth file from a
|
183 |
"""
|
184 |
try:
|
185 |
-
print("
|
186 |
ground_truth_path = hf_hub_download(
|
187 |
repo_id=GROUND_TRUTH_REPO,
|
188 |
filename="ground_truth.csv",
|
189 |
use_auth_token=HF_TOKEN
|
190 |
)
|
191 |
-
print(f"Ground truth file downloaded
|
192 |
return pd.read_csv(ground_truth_path)
|
193 |
except Exception as e:
|
194 |
-
print(f"Error loading ground truth: {e}")
|
195 |
return None
|
196 |
|
197 |
-
|
198 |
def load_leaderboard():
|
199 |
"""
|
200 |
-
Load the leaderboard from a
|
201 |
"""
|
202 |
try:
|
|
|
203 |
leaderboard_path = hf_hub_download(
|
204 |
repo_id=LEADERBOARD_REPO,
|
205 |
filename="leaderboard.csv",
|
206 |
use_auth_token=HF_TOKEN
|
207 |
)
|
|
|
208 |
return pd.read_csv(leaderboard_path)
|
209 |
except Exception as e:
|
210 |
print(f"Error loading leaderboard: {e}")
|
@@ -219,7 +222,7 @@ def load_leaderboard():
|
|
219 |
|
220 |
def update_leaderboard(results):
|
221 |
"""
|
222 |
-
Append new submission results to the
|
223 |
"""
|
224 |
try:
|
225 |
# Load existing leaderboard or create a new one
|
@@ -229,7 +232,8 @@ def update_leaderboard(results):
|
|
229 |
use_auth_token=HF_TOKEN
|
230 |
)
|
231 |
df = pd.read_csv(leaderboard_path)
|
232 |
-
except:
|
|
|
233 |
df = pd.DataFrame(columns=[
|
234 |
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
235 |
"Correct Predictions", "Total Questions", "Timestamp"
|
@@ -308,7 +312,7 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
308 |
|
309 |
# Gradio Interface
|
310 |
with gr.Blocks() as demo:
|
311 |
-
gr.Markdown("# Secure Prediction Evaluation Tool with
|
312 |
|
313 |
with gr.Tabs():
|
314 |
# Submission Tab
|
@@ -350,3 +354,4 @@ with gr.Blocks() as demo:
|
|
350 |
demo.launch()
|
351 |
|
352 |
|
|
|
|
162 |
|
163 |
# demo.launch()
|
164 |
|
|
|
165 |
import gradio as gr
|
166 |
import pandas as pd
|
167 |
import re
|
|
|
172 |
|
173 |
# Constants for Hugging Face repositories
|
174 |
HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
|
175 |
+
if not HF_TOKEN:
|
176 |
+
raise ValueError("HF_TOKEN is not set. Please add it as a secret in your Hugging Face Space.")
|
177 |
+
|
178 |
LEADERBOARD_REPO = "SondosMB/leaderboard-dataset" # Replace with your leaderboard dataset name
|
179 |
GROUND_TRUTH_REPO = "SondosMB/ground-truth-dataset" # Replace with your ground truth dataset name
|
180 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
181 |
|
182 |
def load_ground_truth():
|
183 |
"""
|
184 |
+
Load the ground truth file from a gated Hugging Face dataset.
|
185 |
"""
|
186 |
try:
|
187 |
+
print("Fetching ground truth file...")
|
188 |
ground_truth_path = hf_hub_download(
|
189 |
repo_id=GROUND_TRUTH_REPO,
|
190 |
filename="ground_truth.csv",
|
191 |
use_auth_token=HF_TOKEN
|
192 |
)
|
193 |
+
print(f"Ground truth file downloaded: {ground_truth_path}")
|
194 |
return pd.read_csv(ground_truth_path)
|
195 |
except Exception as e:
|
196 |
+
print(f"Error loading ground truth file: {e}")
|
197 |
return None
|
198 |
|
|
|
199 |
def load_leaderboard():
|
200 |
"""
|
201 |
+
Load the leaderboard from a gated Hugging Face dataset.
|
202 |
"""
|
203 |
try:
|
204 |
+
print("Fetching leaderboard file...")
|
205 |
leaderboard_path = hf_hub_download(
|
206 |
repo_id=LEADERBOARD_REPO,
|
207 |
filename="leaderboard.csv",
|
208 |
use_auth_token=HF_TOKEN
|
209 |
)
|
210 |
+
print(f"Leaderboard file downloaded: {leaderboard_path}")
|
211 |
return pd.read_csv(leaderboard_path)
|
212 |
except Exception as e:
|
213 |
print(f"Error loading leaderboard: {e}")
|
|
|
222 |
|
223 |
def update_leaderboard(results):
|
224 |
"""
|
225 |
+
Append new submission results to the gated leaderboard dataset.
|
226 |
"""
|
227 |
try:
|
228 |
# Load existing leaderboard or create a new one
|
|
|
232 |
use_auth_token=HF_TOKEN
|
233 |
)
|
234 |
df = pd.read_csv(leaderboard_path)
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error loading leaderboard: {e}")
|
237 |
df = pd.DataFrame(columns=[
|
238 |
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
239 |
"Correct Predictions", "Total Questions", "Timestamp"
|
|
|
312 |
|
313 |
# Gradio Interface
|
314 |
with gr.Blocks() as demo:
|
315 |
+
gr.Markdown("# Secure Prediction Evaluation Tool with Gated Leaderboard")
|
316 |
|
317 |
with gr.Tabs():
|
318 |
# Submission Tab
|
|
|
354 |
demo.launch()
|
355 |
|
356 |
|
357 |
+
|