File size: 14,541 Bytes
0ff6c39
248f5a7
 
0ff6c39
a7fdfe6
0ff6c39
248f5a7
0ff6c39
eb215ff
 
 
248f5a7
 
 
 
 
 
 
 
9d3ca6c
eb215ff
 
 
248f5a7
 
eb215ff
 
 
 
 
9d3ca6c
248f5a7
9d3ca6c
eb215ff
 
 
4522453
 
cd26609
4e60755
 
 
 
 
 
 
 
 
 
f7a541f
 
 
 
 
 
 
 
 
 
cd26609
 
 
 
 
0813164
cd26609
0813164
 
cd26609
37ee1f3
cd26609
37ee1f3
 
cd26609
d554072
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
 
 
 
afa19a3
d554072
cd26609
 
eb215ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ee1f3
eb215ff
 
afa19a3
4522453
eb215ff
 
248f5a7
4e60755
20484f3
4522453
20484f3
4522453
 
a7fdfe6
 
4522453
afa19a3
 
 
eb215ff
 
4e60755
 
 
 
 
 
 
 
eb215ff
 
 
 
6e8312c
248f5a7
eb215ff
 
afa19a3
 
eb215ff
6e8312c
 
4522453
6e8312c
eb215ff
afa19a3
 
eb215ff
afa19a3
 
3e4847c
eb215ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa19a3
eb215ff
 
 
 
 
 
afa19a3
 
 
eb215ff
 
 
afa19a3
 
 
eb215ff
4522453
eb215ff
 
 
 
 
 
4522453
eb215ff
 
 
 
afa19a3
4522453
eb215ff
afa19a3
eb215ff
 
 
afa19a3
eb215ff
 
4522453
eb215ff
 
 
 
 
 
 
 
4522453
eb215ff
06a162a
 
 
 
 
 
4e60755
 
06a162a
eb215ff
 
4e60755
4522453
06a162a
 
 
 
afa19a3
eb215ff
248f5a7
eb215ff
248f5a7
 
eb215ff
248f5a7
 
eb215ff
248f5a7
 
 
 
eb215ff
248f5a7
71d28c5
248f5a7
eb215ff
248f5a7
 
 
 
 
 
eb215ff
248f5a7
eb215ff
 
 
35943b1
248f5a7
 
 
 
 
eb215ff
 
 
4522453
eb215ff
248f5a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import streamlit as st
import os, gc, shutil, re, time, threading, queue
from itertools import islice
from llama_cpp import Llama
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS

# ------------------------------
# Initialize Session State
# ------------------------------
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "pending_response" not in st.session_state:
    st.session_state.pending_response = False
if "model_name" not in st.session_state:
    st.session_state.model_name = None
if "llm" not in st.session_state:
    st.session_state.llm = None

# ------------------------------
# Custom CSS for Improved Look & Feel
# ------------------------------
st.markdown("""
<style>
    .chat-container { margin: 1em 0; }
    .chat-assistant { background-color: #eef7ff; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
    .chat-user { background-color: #e6ffe6; padding: 1em; border-radius: 10px; margin-bottom: 1em; }
    .message-time { font-size: 0.8em; color: #555; text-align: right; }
    .loading-spinner { font-size: 1.1em; color: #ff6600; }
</style>
""", unsafe_allow_html=True)

# ------------------------------
# Required Storage and Model Definitions
# ------------------------------
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3  # 5 GB

MODELS = {
    "Qwen2.5-0.5B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
        "filename": "qwen2.5-0.5b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-0.5B-Instruct (Q4_K_M)"
    },
    "Gemma-3.1B-it (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-1b-it-GGUF",
        "filename": "gemma-3-1b-it-Q4_K_M.gguf",
        "description": "Gemma-3.1B-it (Q4_K_M)"
    },
    "Qwen2.5-1.5B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF",
        "filename": "qwen2.5-1.5b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-1.5B-Instruct (Q4_K_M)"
    },
    "Qwen2.5-3B-Instruct (Q4_K_M)": {
        "repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF",
        "filename": "qwen2.5-3b-instruct-q4_k_m.gguf",
        "description": "Qwen2.5-3B-Instruct (Q4_K_M)"
    },
    "Qwen2.5-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
        "filename": "qwen2.5-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-7B Instruct (Q2_K)"
    },
    "Gemma-3-4B-IT (Q4_K_M)": {
        "repo_id": "unsloth/gemma-3-4b-it-GGUF",
        "filename": "gemma-3-4b-it-Q4_K_M.gguf",
        "description": "Gemma 3 4B IT (Q4_K_M)"
    },
    "Phi-4-mini-Instruct (Q4_K_M)": {
        "repo_id": "unsloth/Phi-4-mini-instruct-GGUF",
        "filename": "Phi-4-mini-instruct-Q4_K_M.gguf",
        "description": "Phi-4 Mini Instruct (Q4_K_M)"
    },
    "Meta-Llama-3.1-8B-Instruct (Q2_K)": {
        "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF",
        "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf",
        "description": "Meta-Llama-3.1-8B-Instruct (Q2_K)"
    },
    "DeepSeek-R1-Distill-Llama-8B (Q2_K)": {
        "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF",
        "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf",
        "description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)"
    },
    "Mistral-7B-Instruct-v0.3 (IQ3_XS)": {
        "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF",
        "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf",
        "description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)"
    },
    "Qwen2.5-Coder-7B-Instruct (Q2_K)": {
        "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF",
        "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf",
        "description": "Qwen2.5-Coder-7B-Instruct (Q2_K)"
    },
}

# ------------------------------
# Helper Functions
# ------------------------------
def retrieve_context(query, max_results=6, max_chars_per_result=600):
    """Retrieve web search context using DuckDuckGo."""
    try:
        with DDGS() as ddgs:
            results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))
            context = ""
            for i, result in enumerate(results, start=1):
                title = result.get("title", "No Title")
                snippet = result.get("body", "")[:max_chars_per_result]
                context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
            return context.strip()
    except Exception as e:
        st.error(f"Error during web retrieval: {e}")
        return ""

def try_load_model(model_path):
    """Attempt to initialize the model from a specified path."""
    try:
        return Llama(
            model_path=model_path,
            n_ctx=4096,
            n_threads=2,
            n_threads_batch=1,
            n_batch=256,
            n_gpu_layers=0,
            use_mlock=True,
            use_mmap=True,
            verbose=False,
            logits_all=True,
            draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2),
        )
    except Exception as e:
        return str(e)

def download_model(selected_model):
    """Download the model using Hugging Face Hub."""
    with st.spinner(f"Downloading {selected_model['filename']}..."):
        hf_hub_download(
            repo_id=selected_model["repo_id"],
            filename=selected_model["filename"],
            local_dir="./models",
            local_dir_use_symlinks=False,
        )

def validate_or_download_model(selected_model):
    """Ensure the model is available and loaded properly; download if necessary."""
    model_path = os.path.join("models", selected_model["filename"])
    os.makedirs("models", exist_ok=True)
    if not os.path.exists(model_path):
        if shutil.disk_usage(".").free < REQUIRED_SPACE_BYTES:
            st.info("Insufficient storage space. Consider cleaning up old models.")
        download_model(selected_model)
    result = try_load_model(model_path)
    if isinstance(result, str):
        st.warning(f"Initial model load failed: {result}\nAttempting re-download...")
        try:
            os.remove(model_path)
        except Exception:
            pass
        download_model(selected_model)
        result = try_load_model(model_path)
        if isinstance(result, str):
            st.error(f"Model failed to load after re-download: {result}")
            st.stop()
    return result

def stream_response(llm, messages, max_tokens, temperature, top_k, top_p, repeat_penalty, response_queue):
    """Stream the model response token-by-token."""
    final_text = ""
    try:
        stream = llm.create_chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
        )
        for chunk in stream:
            if "choices" in chunk:
                delta = chunk["choices"][0]["delta"].get("content", "")
                final_text += delta
                response_queue.put(delta)
                if chunk["choices"][0].get("finish_reason", ""):
                    break
    except Exception as e:
        response_queue.put(f"\nError: {e}")
    response_queue.put(None)  # Signal the end of streaming

# ------------------------------
# Sidebar: Settings and Advanced Options
# ------------------------------
with st.sidebar:
    st.header("⚙️ Settings")

    # Basic Settings
    selected_model_name = st.selectbox("Select Model", list(MODELS.keys()),
                                       help="Choose from the available model configurations.")
    system_prompt_base = st.text_area("System Prompt", 
                                       value="You are a helpful assistant.",
                                       height=80,
                                       help="Define the base context for the AI's responses.")
    
    # Generation Parameters
    st.subheader("Generation Parameters")
    max_tokens = st.slider("Max Tokens", 64, 1024, 256, step=32,
                           help="The maximum number of tokens the assistant can generate.")
    temperature = st.slider("Temperature", 0.1, 2.0, 0.7,
                            help="Controls randomness. Lower values are more deterministic.")
    top_k = st.slider("Top-K", 1, 100, 40,
                      help="Limits the token candidates to the top-k tokens.")
    top_p = st.slider("Top-P", 0.1, 1.0, 0.95,
                      help="Nucleus sampling parameter; restricts to a cumulative probability.")
    repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1,
                               help="Penalizes token repetition to improve output variety.")

    # Advanced Settings using expandable sections
    with st.expander("Web Search Settings"):
        enable_search = st.checkbox("Enable Web Search", value=False,
                                    help="Include recent web search context to augment the prompt.")
        max_results = st.number_input("Max Results for Context", min_value=1, max_value=20, value=6, step=1,
                                      help="How many search results to use.")
        max_chars_per_result = st.number_input("Max Chars per Result", min_value=100, max_value=2000, value=600, step=50,
                                               help="Max characters to extract from each search result.")

# ------------------------------
# Model Loading/Reloading if Needed
# ------------------------------
selected_model = MODELS[selected_model_name]
if st.session_state.model_name != selected_model_name:
    with st.spinner("Loading selected model..."):
        if st.session_state.llm is not None:
            del st.session_state.llm
            gc.collect()
        st.session_state.llm = validate_or_download_model(selected_model)
        st.session_state.model_name = selected_model_name

llm = st.session_state.llm

# ------------------------------
# Main Title and Chat History Display
# ------------------------------
st.title(f"🧠 {selected_model['description']} (Streamlit + GGUF)")
st.caption(f"Powered by `llama.cpp` | Model: {selected_model['filename']}")

# Render chat history with improved styling
for chat in st.session_state.chat_history:
    role = chat["role"]
    content = chat["content"]
    if role == "assistant":
        st.markdown(f"<div class='chat-assistant'>{content}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='chat-user'>{content}</div>", unsafe_allow_html=True)

# ------------------------------
# Chat Input and Processing
# ------------------------------
user_input = st.chat_input("Your message...")
if user_input:
    if st.session_state.pending_response:
        st.warning("Please wait until the current response is finished.")
    else:
        # Append user message with timestamp (if desired)
        timestamp = time.strftime("%H:%M")
        st.session_state.chat_history.append({"role": "user", "content": f"{user_input}\n\n<span class='message-time'>{timestamp}</span>"})
        with st.chat_message("user"):
            st.markdown(f"<div class='chat-user'>{user_input}</div>", unsafe_allow_html=True)
        
        st.session_state.pending_response = True
        
        # Retrieve web search context if enabled
        retrieved_context = ""
        if enable_search:
            retrieved_context = retrieve_context(user_input, max_results=max_results, max_chars_per_result=max_chars_per_result)
            with st.sidebar:
                st.markdown("### Retrieved Context")
                st.text_area("", value=retrieved_context or "No context found.", height=150)

        # Augment the user prompt with the system prompt and optional web context
        if enable_search and retrieved_context:
            augmented_user_input = (
                f"{system_prompt_base.strip()}\n\n"
                f"Use the following recent web search context to help answer the query:\n\n"
                f"{retrieved_context}\n\n"
                f"User Query: {user_input}"
            )
        else:
            augmented_user_input = f"{system_prompt_base.strip()}\n\nUser Query: {user_input}"

        # Limit conversation history to the last few turns (for context)
        MAX_TURNS = 2
        trimmed_history = st.session_state.chat_history[-(MAX_TURNS * 2):]
        if trimmed_history and trimmed_history[-1]["role"] == "user":
            messages = trimmed_history[:-1] + [{"role": "user", "content": augmented_user_input}]
        else:
            messages = trimmed_history + [{"role": "user", "content": augmented_user_input}]

        # Set up a placeholder for displaying the streaming response and a queue for tokens
        visible_placeholder = st.empty()
        progress_bar = st.progress(0)
        response_queue = queue.Queue()

        # Start streaming response in a separate thread
        stream_thread = threading.Thread(
            target=stream_response,
            args=(llm, messages, max_tokens, temperature, top_k, top_p, repeat_penalty, response_queue),
            daemon=True
        )
        stream_thread.start()

        # Poll the queue to update the UI with incremental tokens and update progress
        final_response = ""
        timeout = 300  # seconds
        start_time = time.time()
        progress = 0
        while True:
            try:
                update = response_queue.get(timeout=0.1)
                if update is None:
                    break
                final_response += update
                # Remove any special tags from the output (for cleaner UI)
                visible_response = re.sub(r"<think>.*?</think>", "", final_response, flags=re.DOTALL)
                visible_placeholder.markdown(f"<div class='chat-assistant'>{visible_response}</div>", unsafe_allow_html=True)
                progress = min(progress + 1, 100)
                progress_bar.progress(progress)
                start_time = time.time()
            except queue.Empty:
                if time.time() - start_time > timeout:
                    st.error("Response generation timed out.")
                    break

        # Append assistant response with timestamp
        timestamp = time.strftime("%H:%M")
        st.session_state.chat_history.append({"role": "assistant", "content": f"{final_response}\n\n<span class='message-time'>{timestamp}</span>"})
        st.session_state.pending_response = False
        progress_bar.empty()  # Clear progress bar
        gc.collect()